Eckart Modrow

Computer Science
with / Snap!

— Snap! by Examples -

Snap! Build Your Own B X Snap! Buid Your Own B X o = =] X
C | @ file///C:/Users/emodr/Desktop/Snap!% 208uikd%20¥our%200wn%208locks36204.1.2.1.html 1

& 3 Drip Painting mit Beispieien

et s .n-—a—ﬂ-.a-md costume B
PETRSARSN N geryrvprp—]

ot x b‘—t—d—ﬂh-ﬂ-‘.du— B
oty hﬂn-—l—Ou-—--—-ﬂd B
¢ random € I

et 5 tn pick random &

-ty .u.—n—o-.«-nua costwme B

inting mit .xml A Alle anzeigen | X

© Eckart Modrow 2018
emodrow@informatik.uni-goettingen.de

EY MC MDD

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike
4.0 International License. It allows download and redistribution of the complete work with
mention of my name, but no editing or commercial use. In addition to the book, the com-
plete listings of the described programs are loadable from the following address:

http://emu-online.de/projectsOfCSwithSnap.zip

The scripts are developed with Snap! 4.1.2.1 Build Your Own Blocks.

Prof. Dr. Modrow, Eckart:
Computer Science with Snap!
- Snap! by Examples -
© emu-online Scheden 2018

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a
donation, you can do so at the following PayPal account:

emodrow@emu-online.de
Intended use: Snap! book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases
requires the prior written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies
are generally subject to the protection of goods, trademarks and patents. The product names used are pro-
tected by trademark law for the respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability
of the given sample source texts in this book. | assume no liability or legal responsibility for any damages
resulting from the use of the source texts of this book or other incorrect information.

Preface 3

Preface

This book, similar to its predecessor "Informatik mit BYOB"!, uses a collection of program-
ming examples to explore the scope of the graphical language Snap!. It does not replace
a textbook that conveys CS content but shows how to use Snap! to apply CS methods.

After Scratch and BYOB, Snap! in the current version 4.1.2 is the next step in the devel-
opment of graphical tools. The system overcomes several limitations that existed with its
predecessors, so it overcomes many arguments against graphical languages. The current
version has been expanded by numerous extensions in the field of object-oriented pro-
gramming (OOP). It can meet and exceed all requirements up to high school and beyond.
Since drastic improvements have been achieved at the execution speed and availability of
libraries in different fields like pixel access, audio or use of external resources, there are
hardly any restrictions in applications. Particularly noteworthy in this area is the possibility
to use Java-Script functions, e.g. for time-critical operations or extensions within Snap!.
The libraries contain numerous JavaScript-examples.

The selection of problems in the following chapters is relatively conservative, partly based
on existing computer science lessons, but it goes beyond that. That's intended. | hope, on
the one hand, to convert teachers using traditional lessons, and on the other hand, to pro-
vide contexts that brings sense from the perspective of a learner to the information to be
acquired. In this way, teaching should be very much based on CS concepts AND creativity.
The examples describe in detail the handling of Snap! in different aspects. After an intro-
ductory chapter that gives a fast overview about Snap!, the first few chapters explain the
features of the language, followed by sections without any obvious application. This com-
promise is due to space requirements, because advanced concepts require extended prob-
lems. The examples are not hierarchically ordered, so in the second part are also rather
simple ones. At the end of the book there are summaries of the methods used in the ex-
amples and an index.

This book is a translation from German. Unfortunately, | do not speak English well, so it will
be bumpy. | apologize for that. But all of the programs had to be changed — a task that |
really had to do. Be strong and hold it! Many thanks for the wonderful help of the Deepl?
translation program. | would probably never have finished without these.

I would like to thank Jens Mdnig for his support - and for the results of his work. The learn-
ers will be thankful!

| wish you a lot of fun working with Snap!.

Gottingen, am 1.4.2018

@a%/&ﬁ\

L E. Modrow, Informatik mit BYOB, http://ddi-mod.uni-goettingen.de/Informatik%20mit%20BYOB.pdf
2 https://www.deepl.com/translator

Content 4

Content
PrEFACE ettt b e s et et ettt bt een et ens 3
CONEENT <.ttt e b e et ehe e sheses s re s ser e eeene ere se s nenees 4
1 CSand Media STUIESccoecuireireiireee ettt sttt e e eae s et s s e s 7
B AN o To T L Y o= o 1 TP 9
2.1 Block Oriented LANGUAEZESccecveeeeeeeieeeceeerestserietset e e e ste e s st stesaesresnsssenens 9
2.2 Object Oriented LANGUAEESccceeverveerere sttt seeesrtestessse s st s e e e seeste st sve e 9
2.3 Inheritance by Delegationc.eviiiiiincineeee et e 10
2.4 Whatis SNAP!? ettt st st et et st bbb st n e et eate 11
2.5 Whatis SNAp! NOL? .ot st st r et eae s 12
2.6 The SNAPI-SCIEEN ..ottt sttt sttt s bttt e 13
2.7 An Example for Experienced USers: FIUoovvivieneiniecenneene e 14
2.7.1 Writing Your OWN MEethodscc.eveerreienicieiiniee et svesiseee e 15
2.7.2 Elementary Algorithmic and Variablescccvvveievveeececeeree e 16
2.7.3 Creating ObJECES ..ottt et s st s ene e s 17
2.7.4 Communicating With ODJECES .cceeveveeeeece e 18
2.7.5 Drawing @ DiaBram c...cucucueiieieiiiiinienstente e seesae e e sre e eeeesseesesesaes e sennnns 21
3 SIMPIE EXAMPIES .ottt sttt et ettt e st e e b s er s 23
3.1 SWIMIMING ittt ettt st st sheshesreeat st ebeseeneessensen e beaben et es 23
2.2 SOIAr SYSTEM ottt st st e b et e s st s s s eae b s saeaente 25
2.3 CaeSar ENCIYPLION ...eeiieiee ettt et st s e e 27
2.4 TASKS coveeriieiee sttt sttt sttt s e sttt e et st et ettt et sen s ens e neneneeaenennes 29
4 Simulation of @ SPring PENAUIUMcc.veeririeiiciie e s s e 30
4.1 Organization of COOPErationcceeeerrrrnrnieeeneee et sttt eseeeies 30
A.2 THE ClOCK w..teeueeuieeeeseiet ettt sttt ettt et st et sttt e s et e et st es e s es et eneneneas 32
4.3 ThE EXCITOI oottt sttt ettt et st bt s aes e e st b e ebe s bebeesaeentas 32
A4 The TRIEAM ..ottt sttt et sttt s es et st et eae s 33
4.5 TRE Bl ittt sttt ettt sttt st s et nen e et ens 33
A6 THE PEN .ottt et et s bt e bt et eae s b e b e en e eae s 34
4.7 Why is it @ SIMUIQtION? ..ottt e st e 34
5 Troubleshooting With SNaP! ... et ebe b s 35
6 Lists and Related StrUCLUIEScvuevieueiierirecie ettt es s s s 37
6.1 SEIECHION SOt ..ttt ettt s st e 37
5.2 QUICKSOIT c.eeuieieeireeiiet ettt sttt ettt seb e st st ettt ebe et e ses e s e es e ebenes 39
6.3 Routing with Dijkstra Methodcccceiverininniiieniicrnce et e 40
6.4 Matrices and FOR-LOOPSccevveiieriiiiereentesteeieeieteteeteeseestesaestesresreeneenesnsesans 44
B.5 TASKS ettt et bttt e s ea e e 46
7 Object-Oriented Programmingc.cccecceveveeeireneeesesessessssessessessesessssssssssessssssseseenes 47
7.1 Anne and the Filing Cabinetsccccveiveee ettt 48
7.2 MIABNETES ettt st et e r e st s sr et s ae e b be s naesanaen 52

7.3 A LEarning RODOL ..ocuviicece ettt ettt st e s st s s sae st s s annnenens 53

Content 5
7.4 A Digital SIMUIGLOL c...eeieeeeee ettt s sttt st et 57
7.4.1 Sockets and CONNECLIONS ...ccccceruerererenieree et er e et er e ere e 58

742 SWITCNES ..ttt st e st s s s 59

TA.3 GAES oot e e e e e e e e e e 60

T AL TRE PEN ottt ettt s sttt e 60

TA5 LEDS .ottt ettt sttt sttt s e bt et e et n e en st 61

7.4.6 The Interaction oft the COmMpPoNENtScccovviverereiinecnrece e 61

TA.T TASKS ettt ettt sttt st e et s et st s bbbt s 62

8 GrAPNICS et bt sttt et s bbb et n s 63
8.1 LiNE GraphiCs ceeueuieieiieriieiee sttt ettt st st e s s b e 63
8.2 Pixel Graphics and RGB MOdElccoceeeeee et 66
8.2.1 Pixel Graphics with the Pixels Librarycccceeceeveeee e 66

8.2.2 Pixel Graphics with an own Librarycccccveeeveeiecereceeccee e 68

8.3 The Light of the 0ld Stars ... e 70

8.4 A SIMPIE RGB COION IMIIXEN ..ueuveeieetireeeeeesiee et eresee s sesess e esseesaessestesessessesansens 71

8.5 DriP PAINTING cvevvieiiriieiiettc ettt st st st et se et s s ss s e s e e e e s e saeans 72
8.6 EAZE DELECLION ..oieieieicice ettt sttt sttt s s s s 74
8.7 TASKS ettt sttt ettt et st sttt st st b e eae s e sttt ea sebenene st nnntes 76

9 IMAGE RECOGNITION ...ttt e e e sttt e s st s sae e sre e 77
9.1 A BArCOUE SCANNET ..ccuiuvirieiiree ettt sttt sttt etesetese e sastesesessesessasssessesenessensnnns 77

9.2 Project: Transit Prohibited!ccccveivnnieneirc e 82
9.3 Project: Face RECOGNITIONoouviiiieieieeee ettt 88
9.4 TASKS ettt et bbb bbbt be st ebe et eaeaenene 94

L0 SOUNMS .ottt sttt ettt e b et st e e et e e b b et ettt e s bt ee sen bt e ebe s e ene 95
10.1 FING SOUNAS oottt ettt st et e et s st b s bt st s s 95
10.2 ProCesSiNg SOUNS......ccuvviieeererieererierereesesreseeseeestesassessesesestesessesssssessssssssessessenens 96
10.3 MAKING MUSIC «.eevrveeeesie st etee e sessee e stes e st saesre st see e ss s e s erssreeeeseesessensesessenseens 97
10.4 Project: HEaring ChECKcccveivieeeece ettt aer et 99
10.5 TASKS .vviveteue sttt ettt ittt e sttt bttt bt e s sttt bt e nes e s e saetebe s 100

11 Project: Electrons in FIEldSooueeieeieieiieiet vttt sttt s ees 101
11.1 Electron Source and SEt-UPcccceierirrineee ettt eaeraer e e ere s saeanenens 101
11.2 Capacitor and Electric Field ...ttt e e v 102
11.3 Helmholtz Coils and Magnetic Fieldouveeeeveee e 103
11,4 TRE EIECEIONS ..ttt sttt ettt st et ettt st et st bt ben et eae e 104

12 Texts and Related TOPICS ..occureireruciriee sttt sttt sttt bbb et s eae s 106
12.1 Operations ON STFNES ...vvviiiieieiriersererseesteses e st sre e st e e sresreaeeseeseaebeesaesbessensenaes 106
12.2 VIgENEre ENCrYPLION ..cccvce ettt ettt e e st es e s s e nesre e snenan 109
12.3 DNA-SEQUENCING ..vveveiirierieessitisieseesteste s sressesstesessessessesseesesssassesssssssstestessesseassassassans 111
12.4 Text Files and Frequency ANAIYSISccvvieeeeirerecceeie sttt st eraneens 113
12.5 SQL-DAtabasescceueurvereeiririreiresesistesist et ser e st sttt et e b e st s s 117

F2.6 TASKS wovveeeeteeieeieeeeeeeeee et ettt ettt e s ebesaeeae s e e et et e easesaes e s besbebe et et st st sneenenees 123

Content 6

13 Computer Algebra: Functional Programmingcceceeeveeieieiesieienesee e se e v 124
13.2 FUNCEION TEIMS ..ottt et st et e e eneere e s 124
13.2 Parsing of FUNCLION TEIMS ...ocveeeeecreceererieier ettt rne et st se e e saerses s sre s ene 125
13.3 Derivation of FUNCLION TEIMS ...c.eci ittt er e st erene 129
13.4 Calculation of Function Results and Graphsc.cccceveevenieriennnennnseineee s 131
13,5 TASKS ettt ettt sttt sttt sttt st et be e ettt st n e ae e e s en et enesente 134

14 Artificial Plants: L-SYSTEMScccciviieiit ettt st st e st es e s e en 135
TA.L L-SYSTEIMS .ottt et e e e st sttt e eb bbb aes s e et she saeeneens 135
14.2 Create the Drawing INStrUCLIONc.evieiririeiirerieeirtee sttt et s 136
14.3 The Stack OPErationsccccceiveineiriiienreere ettt et s s e e s 136
14.4 Drawing the PIANtScvcicceiiiiceee ettt sttt se e e esr s e sr s aes s e s 137
L4.5 TASKS ettt ettt sttt sttt s et b e e et e s e b e st eb e s e ene st 138

15 AUEOMATA oot e st et e e e e e e srennenene 139
15.1 Correct Mail AdArESSESccoouireerrieiireeie et sttt e s bes e 139
15.2 Hyphenation: KEVIN SPEAKScicevreiririree et sre s 141
15.3 Coupled TUring MacChingsccooveiernirereee e e se e st s ene e 145
15.4 Cellular Automata: Iterated prisoner’s dilemmacococeeveeerninnenecnece s, 149
L5.5 TASKS ceeueueeriee sttt ettt st ettt et eae e aeb e st s et ebeses et eae st ses st etesessesane st ses besen seaas 155

16 PrOJECES oottt et sttt e e e s bt b st eeb et en st n e s et e s 156
16.1 LOGO fOr the POOK ..coveeiiieieiiecieciiree et sttt st et s ses e st ssseesneennes 156
16.2 SnapMinder by JENS MONIGc.ccvvieeiniriireeeiirt et st se e e 163

16.2.1 Importing Table Dataccccvverererenerire et 164
16.2.2 The SNapMinder Datacccceeveeeeiireee e 165
16.2.3 The SnapMinder COUNLIEScvceevieeeceiereee e et esenens 167
16.2.4 USE SNAPMINUEL ..oveeeeie ettt se st e sere s e sre e sens 168
16.3 Connectivity: The World is Smallcccuovreoeieee e e 169
16.3.1 RaNdOM NETWOIKSccceririeeireereiiie sttt e s e 170
16.3.2 Scalefree NETWOIKScccoeveriireeeieeice st 171
16.3.3 The IMplementationcveeiee et s 172
16.4 EVOIULION ovtiiieiresitre ettt st sttt et sttt e s e s bbb b 176
16.5 Using the Sensorboard Calliopecccceeveeierineicece ettt enens 180
16.6 Rate Websites: PAgERANKcccecueuiireeece ettt reer e et s 182

17 At the SUPEIMATKEL ...ccveeeceeieceeetet ettt sttt et e re s s etesbesaeae e ab b aesaeseneeene 188
17.1 Warehouse Management wWith SQLITEcccccoevreereceinicee e s 189
17.2 The Scanning Cash REGISLENccueivereerere ettt et e st eaenees 192
17.3 The SMArt SCAIE ...ttt ettt et sttt e 194
17.4 License Plate RECOGNITIONccvvceevieeeeecertcece e st er e e 200
17.5 The Advertising DepartMeNtc..ccvveveeiereseeeseree ettt eeenees 206

About the Notation of SNAPI-Programsccccueiercie s 208

HOW 0 10 2 ettt et e et et e s et eb et e et n et se st en s 210

1 CS and Media Studies 7

1 CS and Media Studies

In schools and universities, there is a lot of discussion about media literacy as part of the
"digitization offensive". Since the term "digitization" obviously concerns computer science,
CS should participate in the discussion. Educational institutions need to think carefully
about their contribution to a comprehensive education. On the one hand, children and
adolescents also gain knowledge and experience - and in many areas predominantly - out-
side of these institutions; on the other hand, the objectives of "education" and " vocational
training" should be sharply differentiated. Adolescents do not necessarily have to master
the handling of current tools, they can confidently leave that to the adults. But they must
be prepared to take on the appropriate role with future tools.

It is often argued that learners must learn to use modern media to lose the "fear of them".
| think that is wrong. First, children and adolescents are usually simply curious and not
afraid of media. Second, they learn to handle media quickly and easily by others and by
use. The fear is more on the side of the elderly, who did not grow up with this technique
and therefore feel insecure with it. Older people should remember that in their youth, they
had a hard time showing their elders how to use a computer mouse. We can learn from
this situation that the handling of current technology - such as smartphones - can be ac-
quired by the way, but obviously this does not lead automatically to an uncomplicated use
of future technology.

Goal 1: Learners need to be empowered to understand the basics of future technologies
and to acquire their use.

Media usage is not the same as media consumption. The passive use of media of whatever
kind, e.g. simple "gawking", cannot be the goal of the educational system. When we en-
gage with media, they must be in a context that activates learners.

Goal 2: Learners need to be empowered to select and deploy tools to create media based
on their problem. So, they first must learn how to solve problems independently.

Independent problem solving usually is not seen as a central task, at least in schools. Cre-
ative subjects such as art, music and (most) languages (hopefully) at least sometimes strive
for this. All too often, “well-behaved” learning is the primary goal. CS can provide tools to
realize and test one's own ideas even in relatively rudimentary form. Not to realize creative
lessons would be a missed chance. However, this will only work if the teachers themselves
have experiences in independent, creative problem-solving, and if they trust in the learners
accordingly. If teachers only have learned CS content in a "well-behaved" way, then crea-
tivity in the classroom is hard to achieve. If the second goal is to be realized in schools, this
should and must also have consequences for teacher training at universities.

Goal 3: Teachers need to be empowered to plan and realize creative lessons. There should
be opportunity and time in their own studies.

Modern media such as social networks have profoundly changed social life, communica-
tion, etc. The consequences are hard to predict while this process continues and couldn’t
be imagined before it started. It would overtax any teacher if it was demanded that they
address the actual social consequences of computer science systems in the classroom,
which include the impact of digital media. That would not be expedient, because the view

1 CS and Media Studies 8

on “what has happened” necessarily is turned backwards. But what you can ask for is to
show that the use of computer systems has social consequences and that these depend
very much on how the systems are designed. Different problem solutions have different
consequences - and vice versa: If certain consequences are undesirable, then it will usually
be possible to find another technical problem solution.

Goal 4: Learners need to know that there are almost always different solutions to prob-
lems. You should think about their effects, which of course are not conclusive. They
learn that these effects are not given but can be shaped.

Why does this affect Snap!?

Graphical programming tools like Snap! do not only contain the algorithmic components
of any programming language, they are also embedded in a media environment that not
only allows the use of graphics, sound, ... but requires it. When a problem is handled, cam-
eras and graphics programs can and should be used to create the appropriate costumes
and costume changes that visualize the current state of the system. Sound programs make
it possible to comment on the course itself, to edit and insert music or to design it yourself.
And, of course, the results must be presented because product pride is an important mo-
tive for the dedicated work. And there is much interest in the results of others. Snap!
allows algorithmic problem solving at a very high level, but it not only allows the analytical
approach, but also the playful, the experimental, the creative, ... Not allowed is passivity,
because nothing happens by itself. Media are essential system components, e. g. to visu-
alize the results - and they can also be the result itself. Snap! therefore offers the oppor-
tunity to model problem solutions for current problems, also and especially in the field of
media. The self-created algorithmic framework of the model creates understanding of the
observed processes in real life. The experience of being able to gain this insight enables
active, critical analysis of future technology. The examples in this book are intended to
show that this is possible in many areas using elementary methods. They should encourage

you to get started yourself.

2 About Snap! 9

2 About Snap!

2.1 Block Oriented Languages

Snap! 3 is a successor of BYOB (Build Your Own Blocks), whose name already describes
part of the program: the users at schools and universities use existing commands in the
form of blocks and are enabled to develop own new blocks. Their programs (scripts) are
combinations of both. You must know that almost all programming languages are block-
oriented: command sequences can be grouped with a new name. The resulting new com-
mands can use values (parameters) to work with, if needed, and they can return results.
This gives us several advantages:

e Programs become shorter because program parts are swapped out into the blocks.
Multiply used command sequences are written only once and then reused under the
new name.

e Programs contain fewer errors because blocks are developed and tested largely inde-
pendent. The developed command sequence thus remains short and clear. "Long" pro-
gram parts are rarely necessary and usually a sign of poor programming style.

e Programs get their own style because the new commands reflect the way a program-
mer solves problems.

o The programming language is extended because the created blocks represent new
commands and thus new possibilities.

2.2 Object Oriented Languages

When dealing with more extensive problems, the number of subproblems to be solved
increases. Often these can be combined to groups which can be assigned to concrete ob-
jects. Often, these sub-problems appear time and again, so they can be solved when ap-
propriate objects are provided, e. g. in libraries. An important aspect of this way of working
is that it allows teamwork to be carried out well, with the different teams creating objects
that solve part tasks. Of course, the results must be put together. The object-oriented ap-
proach is often realized by creating classes that describe the behavior of a group of similar
objects. From these classes instances are created that are supposed to solve the problems.
In contrast Snap! realizes a prototype-based approach. For each object an example, the
prototype, is generated and tested step by step. If one is satisfied with the result, further
objects of this kind are derived by duplication (cloning) of the prototype. This way is better
for beginners.

The object-oriented approach has following advantages:

Problems become understandable because sub-problems can be assigned to objects and
(largely) solved independently.

Problems become clearer because the division into objects often corresponds to the intu-
itive view, so that "everyday knowledge" can be incorporated into the solutions.

3 http://snap.berkeley.edu/snapsource/snap.html

Advantages of
block-oriented
languages

Advantages of
object-oriented

languages

2.2 Object Oriented Languages 10

Problem-adapted tools can be provided because corresponding libraries exist or are cre-
ated.

Collaboration is facilitated because object-oriented work suggests the broader isolation
of problem solving so that the different groups are less disturbed.

2.3 Inheritance by Delegation

The concept of inheritance is central to object-oriented programming. It can be realized by

classes or by delegation. In the original article by Lieberman?, who describes the prototype-

oriented approach to delegation very early, objects are understood as the

embodiment of the concepts of their class. For example, the elephant Clyde o e e
stands for everything the observer knows about an elephant. If one imagines

an elephant, there appears no abstract class of elephants, but just Clyde.

When one talks about another elephant, here: Fred, he describes it like this:

"Fred is like Clyde, just white."

What does this approach mean for the learning process? If the learner only knows one
copy of a class (here: Clyde), the prototype completely describes his knowledge, an ab-
straction is pointless for him. If he later learns about other specimens and describes them
through modifications to the original, thus replacing some methods with others, changing
attributes and adding new ones, then slowly the image of the class itself emerges as an
intersection of the common properties. Now the process of abstraction is comprehensible
for him and after a few attempts also feasible. Delegation thus is a process that maps the
learning process itself by creating prototypes instead of classes.

In Snap! we mainly work according to this principle, which is presented below in detail. If
you really want, a class system also can be implemented.

In Snap! sprites are created as prototypes and equipped with the desired attributes and cloning sprites
methods. If their behavior has been sufficiently tested, clones can be generated dynami-
cally using the clone block. Each sprite has a parent (may be null) and children (also may
be null). The parent property can be set and / or modified later, so the system of depend-
encies is dynamic. If the program stops, all dynamically generated clones are deleted,

which is beneficial.

At first, a clone inherits (almost) all the attributes and methods of the mother object. This
is indicated by a "paler" representation in the palettes. If a sprite overrides inherited at-
tributes or methods, they replace those of the prototype, as usual. If you delete the over-
rides again, then the inherited appear.

4 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems, 1986, http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html

2 About Snap! 11

2.4 What s Snap!?

Snap! was (and is) developed by Brian Harvey and Jens Mdnig for the project Beauty and
Joy of Computing® and is made freely available on the internet. Since the system runs in
the browser, it does not require any installation and works on almost all devices®. It is sim-
ilar in surface and behavior to Scratch’, a free programming environment for children de-
veloped at MIT%. However, the concepts implemented in Snap! go far beyond Scratch
and have their roots in decades of teaching CS at MIT with Scheme, a LISP language.
They are introduced e. g. in a famous textbook by Harold Abelson and Gerald and Julie
Sussman®. Snap! is thus a fully developed programming language that can be used for
(almost) all problems. For most, it is sufficiently fast now. That is not self-evident and was
a shortcoming of their predecessors. Graphical languages are largely concerned with con-
trolling the state of the system. For example, to allow you to interrupt endless loops or to
"tolerate" access errors to data structures. There remains little time for program execu-
tion.

Snap! is a graphical programming language: programs (scripts) are not entered as text but
composed of tiles. Since these tiles can only be joined together if this makes sense, "mis-
spelled" programs are largely prevented. Snap! therefore is largely syntax-free. Neverthe-
less, it is not entirely free of syntax, because some blocks can handle different combina-
tions of inputs: if you combine them incorrectly, errors can occur. However, this mostly
happens when using very advanced Snap! concepts. If you apply these, you should know
what you are doing.

Snap! is extremely "peaceful": mistakes do not lead to program crashes but are indicated
by the appearance of a red marker around the tiles that caused the error - without dra-
matic consequences. The used tiles, which include the newly developed blocks, always
"live". They can be executed by mouse clicks so that their effect is directly observable. This
makes it easy to experiment with the scripts. They can be tested, changed, broken down
into parts and put together the same or different. This gives us a second access to pro-
gramming: in addition to problem analysis and the associated top-down approach, the ex-
perimental bottom-up construction of subprograms, which can be put together to form a
complete solution.

Snap! is clear: both program sequences and assignments of the variables can be displayed
and tracked on demand on the screen.

Snap! is extensible: with the implemented LISP concepts, new control structures can be
created, e. g. to work with special data structures.

Snap! is object-oriented, even in different ways: Objects can be generated by creating
prototypes with subsequent delegation, as well as in different ways by classes.

5> https://bjc.berkeley.edu/

6 These are, of course, computers, tablets, smartphones, ...

7 http://scratch.mit.edu/

8 Massachusetts Institute of Technology, Boston

% Abelson, Sussman: Struktur und Interpretation von Computerprogrammen, Springer 2001

the developers

origins at Lisp

barely
syntax errors

two styles of

programming

vivid and expandable

object-oriented

2.4 Whatis Snap! 12

Snap! is first-class: all structures used are first-class, so they can be assigned to variables
or used as parameters in blocks, can be the result of a function block or content of a data
structure. Furthermore, they may be untitled (anonymous), which is important for the im-
plemented aspects of the lambda calculus, the basis of LISP. Consequently, the logo of
Snap! contains the same proud Lambda, which builds the hair of Alonzo, the mascot of
BYOB.

2.5 What Snap! is not!

Snap! is not a tool for professional software production. It started as a technology study
commissioned by the American Ministry of Education under CE21 (Computing Education
for the 21st Century), which is also designed to reduce the drop-out rate in technical sub-
jects. It is a tool to implement and test CS concepts by way of example.

Snap! primarily is used for work in the field of algorithms and data structures. Due to the
browser environment, essential areas of computer science such as access to files or hard-
ware can be embedded via extensions but are not (yet) part of the core language. How-
ever, the built-in url-block allows in the meantime quite easy access to the Internet and
thus using intermediary servers to databases or external hardware. Both are included in
the book.

Since the code of Snap! is freely available, there are different versions, sometimes with
substantial modifications. Whether this is a curse or a blessing, is a question of perspective,
as we shall see.

Snapp!

Alonzo

the limits

2 About Snap! 13

2.6 The Snap!-Screen

. Snap! Build Your Own Bl % ' [§ Snap!4.1 Reference Mer X
< C' | ® Nicht sicher | snap.berkeley.edu/snapsource/snap.htm! *| i
[& 4} zero knowledge protokoll

€ Contral * EE E
- I =

D —— v r——

1

§

Scripls Costumes ~ Sounds

Make a variable

o
2
£

2 -
Isg

|set n [0 551
[sets (0@
ety 1o/ (5 EA=) mod ®

=%

:

[set 1 |10/ pick random @LB to GUD
Ehlio-or0

5T

—

The Snap!-Screen consists of six sections below the menu bar 1°.

e On the far left are the command tabs, divided into the categories Motion, Looks,
Sound and so on. If you click on the corresponding button, the tiles of this category are
displayed below. If they don’t fit all on the screen, you can scroll the screen area in the
usual way.

e To theright, in the middle of the screen, the name of the object currently being edited

as well as some of its properties are displayed. The default name of the sprite can - and Sprite-bezogene

should - be changed here. Einstellungen
e Underneathisan areain which, depending on the tab, the scripts, costumes and sounds
of the sprite can be edited or created.
e At the top right is the output window where the sprites move. This can be resized using
the buttons above or via the entry in the tool menu (Stage size ...). E
e At the bottom right, the sprite corral displays the sprites. If you click on one, the middle the tool menu
section changes to its scripts, costumes or sounds - depending on the selection.
e The menu bar on the left offers the usual menus for loading and saving the project as the menu bar

well as individual sprites. Furthermore, many settings can be made. One possibility is
to set the language. Nevertheless, | recommend that you stay with the English version,
as it is possible to differentiate your own blocks, titled e. g. in German, from the native
ones at first glance.
e On the far right we find the green flag known from Scratch, with which several scripts
can be started at the same time when using the corresponding block. The pause button “
next to it pauses everything accordingly and the red button stops all running scripts.
Individual scripts or tiles can be started simply by clicking on them.

10 The division of the areas can be changed with " .

2.7 An Example for experienced Users: Flu 14

2.7 An Example for Experienced Users: Flu

7

oot CITEELTITD

The example simulates the spread of a flu epidemic under different conditions. It provides
a quick overview of the essential features of Snap! and is intended especially for experi-
enced programmers. Beginners should read the next chapters first.

The question is which proportion and which special groups of people in a population should
be vaccinated if the spread of a flu epidemic is to be stopped. The question is not so easy
to answer, because the outcome depends on several parameters: the likelihood of infec-
tion indicates how probable the infection of a healthy person in contact with a sick person
is, the seroconversion time is the time between infection and immunization, the numbers
of healthy and diseased persons at the beginning of the simulation determines the number
of contacts between them, and the number of multipliers indicates how many people in
the population have particularly large numbers of contacts or contacts to particularly dis-
tant groups. If one of them becomes infected, e. g. the disease will be worn in distant areas.
Since contacts, infections, ... are randomized, we will only achieve sustainable results if we
perform the simulation multiple times with the same parameter values - and after that we
still must discuss which values represent "results" in the sense mentioned. That's why the
topic is perfect for a small classroom project. A "control group" develops the higher-level
scripts, in this case assigned to the stage. It designs the task distribution with the other
two groups. The other groups develop the prototypes person and graph, which are largely
independent of each other.

three prototypes

for three groups

2 About Snap! 15

2.7.1 Writing Your Own Methods

At various points it is necessary to get rid of the clones of a prototype without exiting the
program. We achieve that by a new method delete all clones of <prototype>. It is a
Command block, which is a command with (in this case) one parameter. (Function blocks
are called Reporter in Snap!.) New blocks are written in the block editor. It can be started
with the buttons Make a block we find in the palettes or —the fastest way — by right-clicking
on the script layer and calling it from the context menu. First, we specify the method name,
if desired with blanks and special characters, select the type (Command, Reporter, or
Predicate) and indicate whether it’s a global ("for all sprites") or local ("for this sprite
only") method. We can also choose the palette to which the block is to be included. | do
not recommend this: The best place to find the gray self-written blocks is the bottom of
the Variables palette. For example, if you evaluate student programs, it is often a problem
to find the newly created blocks at all.

After pressing the return key, the Block editor opens, and the block name appears — with
+ characters in the spaces and margins. There, we can open another menu
by mouse clicks, which allows to insert parameters in these places and to
assign types to them if necessary. In our case, we click on the far right, enter
the parameter identifier prototype and click the small right arrow to specify
the typing. After that a selection box opens't. We choose as type Object (the R IS

arrow), come back into the Block editor, and drag the required commands :g,i:i“
into its script area.)

Our method uses two script variables (clones and thisClone) known only in
this block. It asks the parameter prototype, which later is passed with a ref-

[creatmputname |

|ue\ele all clones of

ﬁ
{

o for all sprites for this sprite only

m Cancel |

¢

Block Editor

delete all clones of

OK J Apply | Ci 1)
PRIy ancel y

1} Cancel |

erence to the prototype of all persons, for its descendants — these are all
occurring dynamically generated "persons"'2. As long as these are still avail-
able, it will store the first in one of the script variables, delete them from the
list, and then ask that person to delete themselves, with

tell <thisClone> to <delete this clone>*2,

1 This box is described in detail in the snap-reference manual that you get when you click the
Snap! icon on the top-left of the window.

2 The clones created statically through the context menu in the sprite area are not found
there.

13 The delete block can only be found in the palettes of the sprites. You can reach it in the
stage via the search function at the top of the palette area.

2.7 An Example for experienced Users: Flu 16

2.7.2 Elementary Algorithmic and Variables

To define the parameters and other control values, we use the stage, which we click in the
sprite corral. This responds to the message "go" by setting the initial parameters and de-
termining which quantities are to be measured in the simulations. Thereafter, correspond-
ing simulation runs are started.

In detail: Since initially only the prototype person is available, we "fish" for him using the
block my <other sprites> from the Sensing palette. The prototype is the first element of
the received list. We store it in the global ("for all Sprites") variable prototype person that
we created previously in the Variables palette. We also created all the other required
variables via the Make a variable button, with the ones needed only within the stage
being marked as local ("for this sprite only"). You can recognize them at the "marker" be-
fore the name. The others are global. Global variables are displayed at the top of the Var-
iables palette, then follow the local ones. The output area is cleared (there might be an
old graphic), some variables get appropriate initial values and a list called data to record
the simulation results will be deleted (set <data> to <list>). This part could have been
well outsourced to a separate block, but since we want to experiment with the variable
values, it is better if they are "on the table".

In the following, the

number of initially vac-

A

Variable name

| prototype person

s for all sprites

o)

_ forthis sprite only

Cancel l

Make a variable

Delete a variable

MW data

M (finished?

M ‘infection probability

M initial value healthy multipliers
M maximum value

M number of healthy multipliers
M number of healthy normals

M ‘number of immune multipliers
M number of immune normals
M number of infected multipliers
M number of infected normals
M (prototype person

M seroconversion time

|
|
|

(Q initial value immune normals
(@ initial value persons
| (@ number of simulations
o[
[change by €

[z

cinated (the immune
normal) is increased
from zero to 100 in
steps. We find the con-
trol structures for this
in the Control palette.
For each value, a series
of simulation runs is
and the
mean value is deter-

performed,

mined from the results
(here: the maximum
number of infected).
The variable number
of simulations deter-
mines how often this
happens. After each
run, the results are en-
tered as a percentage
in the data list. Finally,
the Graph sprite will
be asked to create a
graphic.

anchor to clear the clones
infection probability o [T JE

to f]
to
initial value healthy multipliers
to
initial value immune normals | to [

to list

seroconversion time setinitial value -~

initial value persons
to 1

number-of simulations

data

-
start simulations for different vaccination rates -

-

perform several simulation runs in each case
I

set maximumvalue to [{
.

to < @ false
hd
start a simulation -

w

measured here is the number of infected persons -

h

enter the resultin the list

round (averone / nitil vaive porsoms | L4

to (data
[_d_limge inifial value immune normais | by [P
delete all clones of | prototype person

v

draw diagram -

2 About Snap!

17

2.7.3 Creating Objects

In addition to the script already described, the control
program uses another one: simulate. In it, some initial
values are reset, and the corresponding number of per-
sons are generated, which differ in type (normal, multi-
plier) and status (healthy, infected, immune). After that
the simulation run is started by sending the message
"come on!" which is heard by all objects in the system.

How to create objects?

In the method we create a person type: <type> and
status: <status>. A local script variable p references a
newly created clone of the specified prototype. After
that, the clone is present, visible and accessible under
the name p — quite simple.

However, the clones should differ in type and status. For
this, they contain (here) a local method inherited from
the prototype setup <status> <typ>. We have to call
these with the given parameter values. We therefore
"tell" the object p that it should execute this method. As
this is local to persons, we take the <attribute> of <ob-
ject> Block from the Sensing palette, select the proto-
type in the right-hand box (here: Person) and after that
in the left box the desired method (here: setup). Because
two parameters are to be specified, we expand the block
with the small arrow keys and enter status and type be-
hind with inputs. The block is to be understood as "p,
please execute in your context of methods and variables
the method passed with the specified parameters". The
block is equivalent to the well-known dot notation of the
OOP languages: p. setup (status, type) ;

set number of infected multipliers

'Q simulate

set number of infected normals

to
VUeateapersonoltype m and status: W

set numberofhealthy multipiers | o ULLCIRZITTR T

 —

m.m

set number of immune nonnals

repeat initial value immune normals

: 6 create a person of type: [IIIF] and status: [T

set number of healthy normals | to

. initial value persons initial value immune normals) —

initial value healthy multipliers
repeat number of healthy normals
;dcruteapersonoitvpe:m]and status: [TV

to [i]
to [

set number of immune mullipliers

9 create a person of type: ivpe and status: | status

script variables _p

set p | to(a new cdlone of Person |

fell p to 9 setup N W

of Person with inputs status type

to C)
to (@
pick random ¥ to P v:

set size to P %

:';el status
set type

go to x:

pick random GI[P to EL'D

invoked methods in Person

2.7 An Example for experienced Users: Flu 18

2.7.4 Communicating with Objects

We are now coming to the actual players in our flu project: the persons. These are symbol-
ized by small circles whose color expresses their status. "Normal" persons scurry around
relatively small-step in their environment and meet the neighbors, where they can be in-
fected or can infect. After a certain period, the seroconversion time, they become immune
and do no longer infect, are no longer infected. Vaccinated persons are immune from the
beginning. Some of the people are "multipliers", i.e. they jump quite wildly around the area
and can spread the infection quickly. They are color coded like the normal, but slightly
different. We produce appropriate costumes in the graphic editor or a drawing program
and import them into the Costumes section.

Once the persons are created, they all receive all the message "come on!". They respond
to this message because they have a hat-block from the control palette that responds to
"come on! ". After that, they get into an infinite loop that only breaks when the global
variable finished? gets the value true. This is the case when there are no more infected.

In this loop, the following actions are performed repeatedly:

1. Objects are searched near the person and stored in the list neighbors. Too far objects
are deleted in this list.

2. Any remaining neighbors may become infected or infect the person if they areiill.

3. It is checked whether the person has to be immune, if the Seroconversion time has
expired. The corresponding variables are changed.

4. After that, the person moves according to their type.

Since data has to be exchanged between persons during these processes and other peo-
ple's method calls are initiated, the example shows a few ways to do this:

The ask <object> for <function call> block is used in the script when looking for neigh-
bors. Because the members of the neighbors list can be arbitrary objects, we throw all
non-person objects out of the lists. In this case, this can only be a Graph sprite. We use
the my <attribut> block from the Sensing palette to ask each object for its name: ask
<item <i >> of <neighbors> for <my <name >>. A little further down, this is done again
in the status query. Again, the <attribute> of <object> Block is executed in the context of
the other object. Therefore, the blocks are surrounded by a gray ring indicating that the
unevaluated code of the block is passed and not its current result.

Directly above, the same happens to the local command infect. This is done - as already
described - via the tell block.

e

Turtie

import 2 picture from another web page or from
a file on your computer by dropping it here

2 About Snap! 19

In two places below, local methods - shown in gray - are executed in the context of the
object. This happens "normally” when the block is reached.

when I receive come on!

set starttime to timer

repeat until finished?

Blocks for direct

sei neighbors | T0 my neighbors . .
; communication be-

tween objects

-
find people nearby
item i of neighbors >

of (neighbors [for| my name

w/continuation

w/continuation

[when 1 start as a done

|_(Ereate a clone of

(a new clone of mysetl
|_tlelete this clone

of Person

|ask item (i of (neighbors | for status

change i by @B

4 status nfected | 1T

{ timer - start time | seroconversion time

set status | to UM

change number of infected multipliers | by

change number of immune multipiers | by &P

by &D
by &

change x by | pick random [P to L
change y by (pick random @[T to &P

change x by | pick random [to P
change y by (pick random [P to [P

if on edge, bounce

2.7 An Example for experienced Users: Flu 20

The method infect infects the current object, if necessary, and changes the appropriate
numbers. After that the appearance of the object is changed.

¢ status |= =001 » and
{ pick random &P to &P | - infection probability

change number of healthy mulipiers | by &)
éhamje number of infected multipliers | by P

change number of healthy normats | by &P

change number of infected normalts | by @

change maximumvalue by P
' sel status | to

| s.el statime | to timer

I @ show yourself

The method show yourself select the appropriate costume and determine if there are still
infected people left.

¢ show yoursel

status = [EEIG

status

switch to costume infected mulfiplier

switch to costume immune multiplier

¢ number of infected normals | = g and
4 number of infected multipliers | 3|

sel finished? [to< true @

2 About Snap!

21

2.7.5 Drawing a Diagram

Finally, we want to have our results displayed in a diagram.
The initial number of vaccinated (in %) and the maximum
number of infected persons (in %) were measured. We cre-
ate an object for this purpose, which we donate a beautiful
pen as a costume. We first have to paint and label a
coordinate system on the screen. We find the blocks for this
in the Pen-palette and (the label block) in the Tools-Li-
brary.

The ascertained data are in list form as variable data:

data
11 A B
1 0 99
2 3 14
3 7 79
4 10 &4
5 13 4
6 17 8
7 20 42
8 23 7
9 27 4
10 30 9
1 33 3

With the helper method and these data the graph can be
created: We send the pen to the first data point, given by a
list with the two mentioned entries. After that we lead him
lowered to the remaining points - with some re-calculation.

when I receive show diagram

script variables l_
9 draw coordinate system

if . ' length of (data > [j

|_\9 draw coordinate system

script variables 1_
s:w'rll:h to costume pen
set size to P %
point in direction EE

set pen color to

pen down draw axes s
go to x: v: €I
go to x: v:

scaling y-axis

go to x: GEP v: E+ i
label (i [@& of size §FP
change | | by &P

set | |to [[

scaling x-axis

. pen up

go to x: m+i Sl -65
label (i /&P of size EFP
change | | by €

label of size P
go to x: v: GED
label [QIFEERIED of size &FP

the pen

2.7 An Example for experienced Users: Flu 22

The result can be admired on the infected in ¥
188 T
=1}
88
78
68
58
48
e
28 T
18 -1

@ i i i
1a 20 g 4a 58

vaccinated in %

output area:

In each case, 300 "persons" were used without multipliers and with only one initially in-
fected (red: infected, yellow: immune, green: healthy). One can see: if half of the popula-
tion is to remain healthy in this model, then 20% have to be vaccinated.

blocks of the Pen palette
clear

pen down

pen up

set pen color to

;:himge pen color by
set pen color to
Ehimge pen shade by [P

selpﬂlshadeto@

change pen size by (1]

set pen size to

stamp
fill

pen trails

Make a block

® ©
:‘.' (@] © - O ..‘. e
® % ° oﬁ‘.oco’: .\..:..
® 1‘ “'=:. "‘..‘:“.‘l.
.::o. & o o
’v: Y .‘. '. .. &b .s
. " o 00 & _°
00% P o .:".‘ﬁ'oo‘ ‘.’
;i': % .'.0000 Ll > %%
® ® o0 o "I’
% s) @ o .0 .&‘ g ©e
.0 Q0 ‘. cP% .0
o ..°0 8° o © .?9% 05 ©8y0
e®o ‘.o o
.: e s w8 ’° ®o0

3 Simple Examples

23

3 Simple Examples

The following examples demonstrate some aspects of Snap!. They are quick to implement

and should inspire modifications and extensions. Above all, they show how easy is visuali-

zation in Snap!.

3.1 Swimming
Contents: J (1
e duplicated objects

e communication via messages

e local and global variables

We draw a swimmer in three states of swimming
(arms elongated or spread, legs bent). These three
images additional are mirrored so that the swimmer
seems to swim in the opposite direction. Afterwards

we draw a swimming pool with pathways as a stage
background and look for a costume for a trainer in
the costumes library of Snap!. That’s Cassy in this case.

We create two sprites, the first being the swimmer and the second the trainer.
If we click on the green flag, the competition should start. The swimmer goes into
starting position on the left lane (x = -195). Its x-position is stored in a local vari-
able X, which is different for each swimmer. Everyone swims in his orbit. Since
the swimmer is a bit big, we scale him to 40%. He then waits for the start signal.

The trainer is also slightly downsized and is sent down-right to the edge of the
pool. There she gives a tip to start the competition. She waits for it too.

Since the blue water is part of the stage, it only receives a single script that re-
sponds to a mouse click. The stage then sends the message “come on!" only to
the trainer. If one uses a two-element list as a message, the first element repre-
sents the message, the second the one or more addresses.

After that our trainer sends the message "start" to all, notes that the competition

has begun, and then jumps around a bit.

sei compeiiionisunning [0 true @

L -8 pick random & to gP -

switch to costume | pick random ¢ to P

set size to %
f;inlitdi to costume swimmer-closel
set x | to §E&

gotox:(x y:
point in direction @S

set size to @) %
go to x: v:
switch to costume frainer1

click-on-theswater4o-start!

broadeast list BGhiEeal (ELEE

3.1 Swimming

24

Our swimmer starts with the message "start". He notes his
start time in a local variable, because afterwards each swim-
mer measures his own time. Thereafter, he periodically
changes his costume depending on the direction of the swim
and glides a random piece forward a random time. His direc-
tion is also stored locally, as the swimmers turn around at dif-
ferent times. After the movement, the swimmer shows his
new time, measured from the starting time, and checks to see
if he should turn back. Then he checks if he is at the finish. If
the competition is still running, he is happy because he is the
winner. This is indicated by changing the variable competition
is running and sending out a message. It was created as
global, since it applies to all participants. In any case, the
movement ends at the finish (stop <this script>).

If all goes well, then four duplicates of the
swimmer are created by right-clicking on its
show

costume in the sprite area and selecting

duplicate
clone
delete

"duplicate" from the context menu. The lanes of

the now five swimmers are assigned by specify- parent..

ing the x-value. The time variables of the individ- SIS

ual swimmers should be displayed above the tracks. For this
purpose, the check mark in the selection box is set in the Var-

iables palette. By right-clicking on the variable
= normal
» large
< slider

slider min..
slider max._
import._
export.

display (the monitor) you can choose different

representations. We take "large"” and slide the

ads across the lanes.

script variables random

set random | to | pick random () to EJP

L= \"]-cann't-believel RLTE 10 e

ing ends.

say [EEEEST for @D secs

el you-never-know RLTE 10 JE=-Ted

set starttime to timer

set time

switch to costume swimmer-close1
glide (pick random X} to LEP secs to xz (%

T) pickrandom " tor0

switch to costume swimmer-long1
glide (pick random X to £EP secs to x:

switch to costume swimmer-wide1

glide | pick random o P secs to x:

s B pick random fTJIIH' 16)

switch to costume swimmer-close2

glide (pick random {KJ to {EP secstox: (x y:

v poition.+ (@B ik randos &B 10 @D

switch to costume swimmer-long2

glide | pick random to P secstox:(x y:

y position + (g5 -4 pick random P to &P

+

switch to costume swimmer-wide2

glide (pick random X to LEP secs to x: X -

Yy position + () ¢ pick random P to P

to timer — start time

e
8 touching 2 and 4 divection LAGTI) 3
if competition is running

say [

[set competition is running

to < {ralse

If someone has won, the trainer comments
on this by setting a script variable of the
script to a random value and expressing
herself accordingly. That's when her pranc-

25

3 Simple Examples

3.2 Solar System*

Contents:
e multiple objects
e parameters and their typing

e parallel methods

We get a picture of the sun and some planetary im-
ages from the net and shrink them a lot. Then we'll
load them as costumes into a planet prototype sprite
called Planet. A second sprite called Starter organizes
the "creation" of a solar system.

Our planet has a set of local variables describing its state. These includes its mass m, the
speed components VX and VY, the acceleration components ax and ay as well as its dis-
tance from the sun r. These values are passed to it by a global method setup. We create it
using the Make a block Button and enter its name. Since the method is to be global, we
take the default "for all sprites". Parameters now can be entered for the + characters that
appear in the block header next to and between the identifiers. We click the first "+" to the
right of setup and enter the parameter name X. We could leave it at that, because Snap!
guesses the type of a value (usually) correctly. But we want to typify the parameters. To
do this, click on the small right arrow to the right of Input name. An extensive selection
window appears. In this we click Number to specify that only numbers can be entered as
a parameter value. For the next parameters we proceed accordingly with the name typed
as Text. We get:

setup (x# (y# [vxNew # | vyNew #

As a script of this block we now need to insert code that will send our planet to the right
place, take the parameter values into the variables, and select the right costume that re-
sults from the planet name. Finally, a local method move yourself is started. Because it
contains an infinite loop, the program must not "hang" in this loop. Therefore, we start
move yourself using the launch block which creates a parallel process (a new thread) and
executes it. This allows the program to continue without waiting for an end of move your-
self. Each planet runs in its own thread.

1% 1n a fairly simplified version: The sun stands like nailed in the middle and the planets do not
affect each other.

‘selup(

+ forall sprites

=y

_ for this sprite only

Cancel '

Create input name

Title text B Input name N

oK) Cancel)

start parallel processes

3.2 Solar System 26

If the sunis in the origin of the coordinate system, then you

N *M
get the gravitational force on the planet F = —G * m3 *r
T
M . .
(vectors bold), therefore @ = —G * <*r. From the two ac- Eiadalialiil.
r = 51 mNew

celeration components ax und ay we calculate changes of [58 7| vxew
the speed components vx und vy and from these changes [% | whew

switch to costume [name

of the position. This happens again and again in the

show

method move yourself. pen down

launch

Now we have to create an new solar system.
We clone our planet three times and baptize ¢ move yourseli
the clones Earth, Jupiter, and Saturn. This is duplicate
clone
done using the context menu in the sprite delste
parent...
area. export...

forever
set | |to

sqii | of r'"xpusi'tiun X X position -i—"”v position x y position

set ax | to (ﬂx m |4 x position }'(D = (L

Finally, our Starter Sprite comes into play. This stamps a

-4 Yy position
sun image in the center of the coordinate system and starts

the three planets by calls to the setup method, which

b(.:hange vy by "‘_I_J
works in the context of the planets with their local values. a0 1o x [[x poton B v- (¥ vooiton TS

All values have been selected
so that the trajectory curves
switch to costume Sun at least partially fit on the
go to x:) v: P screen.

CETOR S setup (100 170 (0 F2.2 [Earth| £ 700 |
IR © | setup 150 (1150 (-2 (2 | [lupiter| F3000
RSN S setup 200 -100 2 (-3 |[Satum|f 2500

3 Simple Examples

3.3 Caesar Encryption

Contents:

e dealing with character strings

e simple typecasting

e blocks as macros

e text output with the tools library
e event handling

We want to encrypt and decrypt simple strings using the Caesar method. Since this is very
hard computer science, we also need a very serious, somewhat boring surface. There
should be some buttons on it. We import them from the Costumes library using the File
menu. (As you can see, there are much more "interesting" costumes in the library!) The
button image is exported to a file. With the help of a graphics program we make it a little
bit longer and label it differently. We reimport the resulting costumes. We create three
new empty blocks called text input, encryption and decryption and make sure that our

buttons respond correct when you click on one of them.

We copy the button twice using the context menu in the
sprite area and change the costumes and blocks accordingly.
We drag the buttons to the right place, change their names
e. g. to bTextinput, and remove the check mark in front of
the box draggable. Now the button is stuck.

Then we create four global variables named original text, ci-
phertext, decrypted text, and key. We show them on the
screen with monitors (set a tick in front of the variable
names) and change to a large representation using the con-
text menus in the display area. After that we pull them to
suitable places.

We import the Tools library (see above). Here we need only
the block label <text> of size <size> from the Pen palette
to label the output. To do this, we create a new sprite named
Control that provides a very serious interface and changes
the variable key when the appropriate key is pressed.

Project notes...

Mew AN
Open...)
Save ~5
Save As...
Import...

Export project...
Export summary...

Import tools
Libraries...

Costumes._.
Sounds...

clicked

r—f-m—h
when

hide

point in direction EIE

:':el pen color to

g;u to x: v: &1

label of size

g;u to x: ¥:

label of size

g;u to x: y:

label of size
g;u to x: v: &L

label [T of size

to "nail a sprite"

Bt

go to x: v:

label Change-key-with-up-and-down-keys L v
set originaltexi | to Jij

We now come to the actual functionality,

which can be developed independently of text input
each other. Text input is simple: we ask for

the original text. Sure, the output can be Text Input
made much more beautiful. Ciphertext:

key:
ask and wait

sef orginaliexi | o answer

decrypted Text: -

Change key with up- and down-keys

3.3 Caesar Encryption 28

Caesar encryption consists
encryption

of moving all characters in
the code (here: in Unicode) 5;:ript variables | i char | code [cipherchar -
by the key length. The last |2 cphertext | to j B a few script variables for detailed

display 2
characters are moved for- [T delete old content

ward cyclically. In the ad-

repeat uniil - ' > |_'_:'J';u;jL|'_| 1 i original text hd
- edit all characters P

joining script this is done
set char | to (letter i of original text -

very verbosely, but - hope- |
fully - legibly. Note that the set code | to unicode of char getih character and defermine character code 7
green length of <string>- e o [oo Vel -

block from the Operators :
palette works with strings,
the brown length of <list>- Ccode B0 Feode 500 =

version from the Variables the actual Caesar encryption y

convert lowercase to uppercase .

change code | by
palette works with lists. —_—
if * (code > [y

change code | by

set cipherchar | 0 [unicode ‘ code as letter -

[- — - - attach cipherchar to ciphertext 4
set ciphertexi | to [join | ciphertext ' cipherchar

change i | by P =
next step &

ﬂﬂdecryptiun
The decryption is done inversely

§cripi variables | i char | code | cipherchar for encryption

set decryptediexd |to [

_5.el cipherchar | to | letter (i of ciphertext Text Input This is a total secret text!
set code | to | unicode of | cipherchar Ciphertext: YMNX NX F YTYFQ XJHWJY YJCY!
i Sode LA ond § code Ml TR THIS IS A TOTAL SECRET TEXT!

change code by P % key key: B

if - (code < [Change key with up- and down-keys
change code | by

set char | to | unicode code as letter

set decrypiediexi | to | join decrypied text | char

change i | by 1]

Simple Examples 29

Tasks

: Find out about the XOR encryption. Implement the procedure.

Find out about transfer procedures for encryption. Implement the procedure.

Find out about the cryptanalysis. Implement a frequency analysis.

In the camel problem, the animal is in a terrible situation between three pyr-
amids. It moves purposefully towards a randomly selected pyramid. Once it /f/} /é}
has travelled exactly half the distance to the pyramid, a hateful desert spirit

comes and whirls the poor creature around, so that it no longer knows which
pyramid it was driving. The movement, of course, leaves a print on the

screen, and the procedure begins anew. /’}

The goat problem is popping up in the media every once in a while. The point
is this: in a raffle there are three doors behind which there is a goat in two, A B =
behind the third is the main prize. The game leader who knows the positions

asks the player to guess a door. He then opens one of the remaining doors, What's your SENE

guess?

behind which a goat is located, and offers the player to change one's choice B

—or not. The question is: Should he do that? Realize the game and decide the
question empirically.

Desert ants live alone in the desert. If they leave their burrow they look for
something edible in the area. Once they find this, they run right back to the Yy %\L{’
burrow. Obviously, they remember what movements they have made. From b
these they calculate the direct way back. Realize the process.

On their way to the burrow, the ants lay a pheromone trail that evaporates
slowly. On it they find their prey, take another piece and run back to the bur-

row, laying a new pheromone track. If they haven't found anything, they
won't leave a new trail.

Two young ladies sit in the theatre bistro and get bored. One stands up and
goes ... and then the story goes off! But how?

4.1 Organisation of Cooperation 30

4 Simulation of a Spring Pendulum

In addition to the extensive freedom of syntax, the excellent visualization possibilities and
the good-natured behavior of Snap! in case of errors are an incentive for the learners to
proceed experimentally and test their own ideas. In addition to the analytical top-down
procedure, this results in a bottom-up approach of the trial-and-error, which is important
for beginning programmers because it allows them to gain experience in this field, which
they can systematize later on. Experimental approach opens up opportunities for inde-
pendent problem solving right at the beginning instead of following given results.

In the field of simulations, including many of the usual games, we find enough simple but
not trivial problems which can be solved by beginners with a bit of good will. Experimental
work naturally requires an interest in developing one's own ideas. We therefore need
problems that generate sufficient motivation. As an example, we choose the simulation of
a simple spring pendulum, which hangs on a periodically oscillating exciter. Ok, ok, | already
know that an example from physics does not have a very motivating effect on all learners
- rather in contrary. But I'm not giving up my hope!

4.1 Organization of Cooperation

If groups work largely independently of each other, it must be clear on the one hand in
which framework they work, and on the other hand how the results can be brought to-
gether later on.

To create a frame, you can create empty blocks with the correct names as "dummies".
These can be used in scripts without any functionality. The required objects can also be
created and provided with rudimentary behavior, e. g. in response to events: You can, for
example, output a speech bubble with an explanatory text: "This and that should actually

Project notes. ..

happen now! " This program frame can be exported and imported as a whole or in parts: New -:-B
pen... »
Save =]
e The project can be exported with all its parts using the file menu. It will appear at the ;Sr:;;’t“‘s
bottom of the Snap! window. Clicking on the arrow to the right of it will take youto ~ —> | Eonerect
the download folder where it was saved. From there it can be dragged into any Snap! {Tbort ool
window and opened again. | Soande

e If there are global methods (blocks "for all sprites") in the project, another item "Export
blocks..." appears in the same menu. If it was chosen, the blocks to be exported can be
selected in the window that appears. These can be dragged into open Snhap! windows
like projects.

L Federpendel.xml &

4

Simulation of a Spring Pendulum 31

Sprites can be exported with their local methods as a whole by selecting the item "ex-

port..." in their context menu in the sprite area. The re-import is carried out as de-

scribed above.

Within a project, scripts can be transferred from one object to another by dragging
them from the sprite where they are located on the script area to the sprite in the sprite
area that is to be supplied with the script. The addressee will be highlighted a little bit
when "dragging on", if it has noticed that it is meant.

The example of the spring pendulum contains several parts that are largely independent,

so that group work is almost unavoidable.

We identify

an Exciter, the dark top-left plate that periodically swings vertically. Its frequency w
(instead) is an instance variable and can be changed in the variable display.

a Ball, which is relatively stupid on a thread, but understands at least so much physics
that it knows the basic equation of mechanics.

a Thread that has to draw itself again and again so that we don't see any protruding
ends on the screen.

a Pen recording the motion-time graph of movement.

a Clock for the common time.

show

duplicate
clone
delete

parent...
export

the screen layout

4.3 The Exciter 32

4.2 The Clock

We create a new sprite and draw a simple watch as its costume. When clicking
on the green flag, we choose this costume for the clock and send it to the top-

sl-witd'j to costume Clock

right corner. After the clock has been started using the start message, it sets the §§
variable t to zero and remembers the time of the timer built into Snap! in the go to x: ¥:
variable start time. Afterwards, it continuously transfers the past time in sec- == B RS
onds into the variable t, which is available to the other sprites as system time.
Since the times t and start time logically belong to the clock, we choose them [
as local variables. Local variables can be accessed from other objects via the ‘ set 1 | to/ timer — | start time
<attribute>of <object> block of the Sensing palette. We export the clock “=
sprite as specified to the file Clock.xml.

Extension: Let the sprite display the time (minutes and seconds) either "digital" (R ELT
or by moving the pointers correctly.

4.3 The Exciter

We draw a simple rectangle that symbolizes a plate hanging somewhere. Since the plate
should only swing vertically, it needs a fixed x-coordinate on the screen (here: -200) as well
as a resting y-position (here: 150). Around these it oscillates with a fixed amplitude (here:
10) with a variable circle frequency o (here: 150). With help of the time t that initially has
a value of zero, the y-coordinate is calculated to

y =150 + 10*sin ot.

This information can be translated directly into a script.

when

!'.:“'itd'l to costume Exciter

set x to @ZIP
to Y

5etytn|(m+ Mo | % (w E& 1 | of Clock

The script starts to work when the Go-message (click green flag) is sent. Since the scripts

of the other parts have to be started at the same time, this option is senseful.

The variables used are more interesting. The time is
imported by the clock. The frequency is not required - upamow | key pressed |l when downarow | key pressed
in any other script and should therefore be created lo- = & "1 =={1000 if ‘w =[]

. e
cally. You can change them using the arrow keys. | change w | by €
We export the sprite as described as Exciter.xml.

Extension: Let's also draw the "laboratory ceiling" against which the exciter swings. Alter-
natively, a roll can rotate, which leads to a vertical periodic movement via a pulley.

4 Simulation of a Spring Pendulum

33

4.4 The Thread

The thread replaces the coil spring. It has only one characteristic, the spring constant
D. This is set once to a fixed value, then a bright vertical line is drawn at the location
of the thread, which deletes its old representation (which of course could be done
more elegant). Then the current line from the ball to the exciter is drawn. We export

the object as Thread.xml.

Extension: Instead of a simple string, draw a spiral spring with a constant number of

coils stretching and retracting.

4.5 The Ball

Our physical knowledge is "incorporated" into the ball,
which can be rather flimsy: we know the basic equation
of mechanics F = m*a as well as Hooke's law F = D*s,
with s the distance from the zero position. Furthermore,
the acceleration a is the change of speed per unit of time
and Vv is Known as change of position per unit of time.
Nothing else. We translate this knowledge into a se-
quence of commands: We determine the current deflec-
tion s, from this F, from this a, resulting v and from this
the new position.

We export the ball as Ball.xml.

Extension: Introduce a friction constant R that decreases
the speed by a certain (small) percentage. R can also be
changed interactively in a meaningful way.

set pen color to i
. set y to
| set y o
r.:et y to | y-position | of Ball

set pen color to

S

set y o y-position | of Exciter

switch to costume Ball
go to x: D v: @
set size to P %

set m | to [EHY

D | of Thread

4.6 ThePen 34

4.6 The Pen

The pen does not have any local variables. It travels slowly from left to right and moves in
the y-direction to the y-position of the ball. It writes. We add as a small delicacy the func-
tion that it starts to re-write when it reaches the right margin.

point in direction EE
set size to P %

go to x: y: yposition | of Bal

set pen color to

set pen size to @

go to x: y: [yposition | of Ball

We export the sprite as Pen.xml.

Extension: Enter a way for the stylus to derive its x position directly from the system time.
It should also be able to run at different speeds.

4.7 Why is it a simulation?

Our example contains some basic knowledge of physics, but there is nothing to be found
in it about resonance, beatings etc. With the program, we check whether the necessary
consequences (according to Heinrich Hertz) of the basic knowledge agree with the obser-
vations in the experiment, i.e. whether our ideas of physics result in the observed behavior.
We're simulating a system to check our imaginations. Instead of mathematics, we use an
algorithm that tracks system behavior over a sequence of small temporal changes. So in-
stead of integrating "mathematically"”, we iterate "informatically". However, except of the
simple cases a tool for the integration of a differential equation system does nothing else.

Something completely different is an animation in which the observed behavior is pro-
grammed. No new phenomena can arise here, because everything is known. Animations
present something, simulations can lead to real surprises.

5 Troubleshooting with Snap! 35

5 Troubleshooting in Snap!

Snap! visualizes the program flow without requiring special activities of the learners. This
alone makes many errors "visible", which would otherwise require the laborious analysis m

of code to find them. For example, if a body moves in the wrong direction, then it is quite Delete a variable
clear what to look for.

Since global and local variables can be displayed on stage by ticking the checkboxes in front Fi stackA
of the variable name in a monitor, their change can be observed directly. Script variables E .m
can be displayed in the same way if the show variable <name> or hide variable <name>
blocks are built into the script. An essential aspect of troubleshooting is the "freezing" of
the variable assignments at a program stop: if you end the program, the current values of
the variables are retained and can be inspected.

Control outputs during program execution can be easily
accessed using the Looks palette blocks: say <some-

thing> for <n> secs and its relatives also allow more : size
complex expressions to be output, so they can be §}Z§E§

_stackC

tracked on the screen. The wait <n> secs and wait un- |

til <condition> blocks enable pauses in the program

flow at certain points and/or when certain conditions
occur.

If the process of the entire programme is to be followed gradually, then the
Visual Stepping must be turned on (at the top of the output window).

@ =

After that, the footsteps will appear light green, and next

Q:Iisc size E_;
Q (temporary) n;,‘

to them a slider will appear that determines the pace. A

button appears between the green flag and the red stop Monitors of a global

button to interrupt or start the stepping process. If the list, a local sprite

speed controller is on the far left, the program can be variable, and a

L ipt variable.
run through in single steps. The currently executed block Script vaniable

appears light green.

If the program execution is to be
followed within the own blocks,
then these must be opened before
starting the program. The blocks

can also be nested. i | delete @IS of (Stacks
rd.elete of (stackC

Apply | Cancel |

5 Troubleshooting with Snap! 36

We want to follow the processes with a small example. For whatever reason - the problem
of the "Towers of Hanoi" should be dealt with. Therefore we draw a disc and assign this
costume to a sprite disc. Further discs are to be produced by cloning. We have written a

method for this - but it does not work. Too bad!

Inside: Error
expecting list but getting nothing
| Q create @ discs

To locate the error, we open the method in the editor, click on the Visible Stepping
button, set the desired speed and then click on the new block again. In the editor we can
track the commands called - and where it goes wrong.

LU

tell newClone to | go to x: ey -100 B4/ 20 % &) | of Disc

Emor
expecting list but getting nothing

There's something missing!

Other blocks that can be helpful in troubleshooting are found in the libraries. They are
described by their own help pages, which are accessed through their context menus.

For me, the most important way to search for errors is to remove blocks from
the scripts and "just let them lie" next to them. If a script works after that the
blocks can be inserted again one after the other. In most cases the error can be
narrowed down quickly.

Drag the orange tag from
the catch block
to the throw block.

You can change the tag's name
by clicking on it without
dragging; then you can nest
more than one catch block:

=)

6 Lists and Related Structures 37

6 Lists and Related Structures

Contents:

e elementary handling of lists
e sort

e more complex applications

In addition to atomic data types such as numbers, boolean values and characters,
Snap! knows the structured types string and list. Strings are described later in this book
because they allow many applications. This section deals with lists because they are prac-
tically always needed. All higher structures can be built up easily with them. The use of lists
is first shown in a simple case - sorting, followed by more complex applications.

6.1 Selection Sort

The example is extremely simple: it uses only global variables and blocks without parame-
ters, i.e. macros that serve to combine a command sequence under a new name. Since it
also takes advantage of the visualization possibilities of Snap!, it is a very good introduc-
tion example in lessons.

We start with an empty Snap! project. If we want to sort something, the elements to be
sorted must be stored somewhere. For this purpose, there are variables, which can be im-
agined as "boxes" that can hold any content. For saving several elements there are lists, a
kind of "row of boxes". The blocks for editing variables and lists can be found in the Vari-
ables palette.

By the way: The magnifying glass for searching in the upper right corner of the palettes
shows us candidates for blocks corresponding to the search pattern. Among them we find
blocks written by ourselves and some that are not in the palettes at all.

So, we create a variable called unsorted numbers and assign an empty list to it. (With the
arrow keys in the list block we could also enter initial values.)

If the variable is displayed, it appears in the output window. There we can choose different
presentation forms in the context menu or we place the list as a dialog anywhere in the
Snap! Window. In the same way, we create a second list of sorted numbers that will later
store the sorted data

First of all, we need unsorted data — as usual random numbers.

We create it with a
The
number of random

small script.

values is deter-
mined by the num-
ber of repetitions
in the loop.

Delete 2 variable
&

| script variables ' a

[inherit |

(list |§
(| in front of B

(item @K of B
(‘all but first of &

(length of

< B contains

[add gmE to B
P
insert (7] at @ of A

[replace item @ of & with

Make a block

(unsorted numbers

o items

list view...
open in dialog. ..

6.1 Sortieren mit Listen — durch Auswahl

38

We test the script several times - time and again we get
a new number list. Great! We proudly create a new
block called generate new numbers. (Right-click on the
script area.) In this one we simply append our script to
the "hat" with the block name. Done - we have written
a new command! We can find it at the bottom of the
Variable palette - if we didn't specify anything else.

From this list of numbers, we want to select the smallest
number. To do this, let's assume that the first number is
the smallest. Afterwards we will look at all the following
figures. If one is smaller than the previous smallest num-
ber, we will remember it. If we are through, then we "re-
port" the result - we write a function get the smallest
number.

It works great, too. However, only once, because we
can't find the next smaller number in this way. This is
only possible if we remove the smallest one from the list
every time. Because we only know which was the small-
est number after the entire run, we remember not only
its value but also its position - and throw it out after the
run through the list.

Sorting a list now is very easy: We get the smallest num-
ber from the unsorted list and put it in the sorted, one
after the other. Ready. The script is packed again in a
new block. We call it Selection Sort.

unsorted numbers

(sorted numbers]

unsorted numbers sorted numbers)

gl s [
:(ER-
-
o 42
sEN-
i 50 |

"ICH -
d o 8
J o5 8

[o8 I8

r -

generate new numbers

to list

iél unsorted numbers

add | pick random) to P to (unsoried numbers

-

get the smallest number

set smallestnumber | to' jtem (5 of (unsorted numbers

repeat until - ‘1 > length of (unsorted numbers

i item (i of (unsorted numbers < (smallest number ‘
of (unsorted numbers

set smallestnumber | to ' item (i

report smallest number

get the smallest number

set smallest number

to ' item B of (unsorted numbers
P position | to |

seti |toH

repeat until - ‘i > ' length of unsorted numbers

[jtem (i of unsorted numbers < smallest number ‘

set smallestnumber | £0 ' item (i of (unsorted numbers

3

set posiion | to a

delete | position of (unsorted numbers

fe_poli smallest number

| Selection Sort

§et sorfed numbers | to ' list

repeat length of “unsorted numbers

add get the smallest number to sorted numbers

—

6 Lists and Related Structures

39

6.2 Quicksort

As a second, recursive example we want to realize Quicksort® in the same
environment as above. To do this, we'll first write a more elegant method
for creating new numbers using a parameter and local script variable. This
allows us to indicate how many numbers we want.

set numbers | to [generate @) new numbers

Quicksort is started by specifying the list to be sorted.

The actual work is done in the block devide and arrange the list<list>
between <left> and <right>. As pivot element we select the middle of
the respective partial list.

Table view

Table view

—-a
=]
[y
=]

-
Lo

set i |to (i

(-]
[--]

¢ Cdsada’

set re | o ([

L= = T - I~ I T L]
W =~ N W N =

—
(=]
—
=

-

repeat until - ' > re

.devide and arrange the hist (1] between

script variables ' | re pivot

{item (i of (1 }2 pivol

generate 'n # new numbers

script variables | result

set resull |to list

add (pick random @ to @ to (result

quicksort ' numbers

devide and arrange the list list between @) and ' length of / list

left # and | right #

]

set pvol to item| round | left + right /g3 | of I

ord item (i of (1 =

change i | by &P

;epeutunlﬂ

{ item (re of (T |3 pivol

or{ item re of (1 — pivot

seth to item/li of (1

replace item (li of (1 with

replace item re of | with h

change i | by &P
change ¢ by @B

ﬂevide and arrange the list 1

if - ‘right >'hQ

devlde and arrange the list |

between left and re

between H and right

> The procedure can be found in various versions on the Internet, e. g. at http://de.wikipe-

dia.org/wiki/Quicksort. An in-place implementation was selected here.

6.3 Routing with Dijkstra Method 40

6.3 Routing with Dijkstra Method

A graph is given by an adjacency list. In this all nodes of the graph are listed. From each
node a list "goes off" with the neighboring nodes and the respective distances: that is,
those nodes to which a direct connection exists. Examples are a very simple graph and its

adjacency list.

A3} {0l T—{c[4]
a[a}o[7}>[[5]
Az} —>[e [T {c[7]

To solve the problem, we need a specialist: we

draw Mr. D. He must be able to generate the

adjacency list of a given graph. The graphs are
simply drawn on the background - here very
tastefully done.

We create the list statically by adding the cor-
responding elements to a local list, which we
return as result of the operation.

script variables (a

|;l a |to list

add [[530Y) sist (5

entering nodes and

edges as sub-lists in
another list

The global variable adjacencyList receives these values via a simple [P FSSSSSRRREFI === rmmma s

assignment.

For further processing we need three other lists: The list openTuples includes tuples that
contain the name of the node, its total distance from the start node, and the name of the
predecessor node; the list distances includes tuples that contain the name of the node
and its total distance from the start node, it is sorted anew each time something is added,
so the node with the shortest distance from the start is in front; the list finishedNodes

6 Lists and Related Structures 41

contains the names of the nodes that have already been finished. The setup of these lists
for the startup is summarized in a preparation method, which also transfers the name of
the start node. After you have called it, you'll find the following situation:

 (finishedNodes | | distances N

preparation | start = A

delete of (openTuples
delete @K of (finishedNodes

5 fength:3

delete @ of distances

add (=T start 0 F to (openTuples

The searching process is very simple in this version, because most of
the "intelligence" has been put into the handling of the lists. This is routing from (from=A to (to=H

done in the method step. sel adiacencylisi | to [new adjacency list

|;reparai_inn from

repeat length of “adjacencyList

show result to

step

f:k:ript variables
neighbors | currentTuple | currentNode | dist | neighbor (i

currentIndex

For the tuple currentTuple with [curentTuple | 1o item @D of (openTuples

the smallest distance, the new dis- delcte @D of (SFERTHPIS

tances are calculated for the neigh- ===

. Sel cumeniNode | 0/ item of / currentTuple
boring nodes. o

set disl | to/ item of | currentTuple

sef cumentindex | fo f unicode of currentNode |— unicode of] | + P

sef neighbors | o item @ of (i currentindex i adjacencylist

The node is marked as edited and R ERETT = T Tn EOR AR (T N LT RS
all unedited neighbors with new [e sl

to |fJ

repeat length of neighbors

total distance and predecessor
nodes are entered in openTuples.

set neighbor | o item (i of (neighbors
¥ not - (finishedNodes contains |

item K9 of neighbor item of (neighbor + (dist

currentNode

to

add | [i5¢

openTuples

This list is sorted by distance and change i by &9

tuples with larger distances are de- [&57 e i e
leted. remove double tuples

6.3 Routing with Dijkstra Method

42

How to sort, we have seen above. Here it is done by selecting the smallest item.

“sort open tuples

script variables | sortedTuples
set sorfedTuples | &0 list

repeat length of openTuples

set min |to item @XS of (- G5 i openTuples

set pos |to 1]

set i |to 4

(/3151 | length of (openTuples — &P l

it | item @S of (11111

Ui openTuples < min

sef min | to| ftem @) of (12111 [Ui openTuples

set pos |to a

S

1]

change i

add (121 pos | Ui openTuples | to (sortedTuples

delete pos of openTuples

delete of (openTuples
repeat length of | sortedTuples
=hl item &K i sortedTuples | to (openTuples

delete & of (sortedTuples

remove double iuples

repeat uniil - (i > ' length of (openTuples

set k |to item @S of (2111 i | i openTuples

if * | item @S of (ii2'i | v openTuples

delete (] of (openTuples
else

c'hange i

by &9

the list sortedTuples takes
up the sorted tuples

assuming that the smallest
distance comes first

find even smaller distances if
necessary

add the tuple with the small-
est distance to sortedTu-
ples and delete it in open-
Tuples

copy back the sorted list

Now for each node the tuple
with the smallest distance is
at the top of the list. If other
tuples occur for this node,
they are deleted.

6 Lists and Related Structures

43

Finally, we must select the distance to the searched node and let Mr. D. display it.

r -

show result | to

.

script variables

et i tof

set disl | to [§

repeat unfil - 'i > length of distances

The distance is 10

think for @I secs

think (join dist | for @ED secs

Mr. D.'s gonna find out!

6.4 Matrices and For-Loops 44

6.4 Matrices and FOR-Loops

If we have lists with direct access to each element, then we don't need any special arrays,
stacks, queues, etc. of our own accord. All higher data structures can be built from lists.
Nevertheless, we are still working on the data structure matrix because it is traditionally
used, for example, in the adjacency matrices. (Attention: for the sake of brevity, we waive
all security questions!)

Of course, we pack a matrix in a list. For this purpose, we agree on the following list struc-
ture (arbitrarily):

[[list with sizes of index ranges] [list with data 11

The dimension of the matrix is derived directly from the entries in the first sub-list. A two-
dimensional sequence with two values per line would have the following structure:

[[2,3]11,2,3,3,4,56]]

We create a two-dimensional matrix of the size a x b by creating the two desired lists. The
first contains the two passed parameters, the second one should be marked as empty, e.g.
with a minus sign. We return the result. We use global methods.

G —— N<.3w \{ve can write value? with set |nt'o the .ma— The syntax can be
_ m : trix, nice and clear. We first get the dimensions chosen freely,
ipt variabl atrix
o e\ = and determine the width of the matrix. Then we with parentheses,
calculate the position of the place to be changed if you like!

and overwrite the corresponding list entry. The
get method is used to read matrix entries.

script variables | pos

set pos |to| mx item G of (121

report item (pos of item 59 i matrix

In many programming languages, the counting loop is the most common tool for passing
through matrices. In Snap! we find something like this in the Tools library, but we can
write such a control structure ourselves. To do this, we create a new block for <counting
variable> from <start> to <end> step <step> do <script> and take a closer look at the
type of parameters.

Write your
own control
structure.

6 Lists and Related Structures 45

We mark the counting variable i as upvar. This allows you

to change its name "externally", even though its internal
name remains the same - i.

start, end and step are normal number parameters.

We mark the script as C-shaped command. This means
that it is regarded as a command sequence that is trans-
ferred to the block unchanged, i.e. it is not evaluated.

ﬂJ Delete l

Cancel l

C-shaped makes sure that the block gets the usual ap-
pearance of Snap! commands, where the command se-
quence to be executed is inserted into the "mouth" of C.

Using this loop method, we can quickly fill a matrix with

random numbers.

Finally, we want to display the matrix
"decently" on the screen, i.e. in the
usual two-dimensional table form. To
do this, we create a list that is filled
ot dsplay |10 list) with sub-lists, the rows of the matrix,

from @ to height step @B do that contain the table data. This list is

|_5‘m-mw o fist displayed and can be moved anywhere
as a table view.

for @from 1 to (1) step 7T do
add (get (ZEI [ED . (D 1 to(row

add (tow to (display

say (display

Table view
3 A
1 83
2 27
3 29

= 7] new Matrix[72,3]
fnrlfis from & to &P step P do

for@fromiq— to/ 3 step 71 do
set () [€D . (D 1 to pick random P to EP

40
41

6.5 Tasks 46

6.5 Tasks

1. Find out on the net about the various sorting methods. Implement some of them
like Shakersort, Gnomsort, Insertionsort, ...

2. Complete the specified methods in such a way that incorrect entries are inter-
cepted.
3. Implement matrices differently by structuring the used lists differently.

4. a: Find out more about the data structure dictionary.
b: Implement the structure with appropriate operations.

5. a: Implement the data structure stack.
b: Implement the data structure queue.

6. Implement a simple binary tree with the operations
new tree

insert <element> in <tree>

count elements of <tree>

is <element> existent in <tree>?

delete <element> from <baum>

determine the maximum depth of <tree>
balance <tree>

@® >0 20 T Q

7. Implement other control structures:
a: do <script> until <predicate>
b: while <predicate> do <script>
c: case <variable> of < [[valuel,scriptl], [value2,script2], [value3,script3], ...] >

7 Object-Oriented Programming 47

7 Object-Oriented Programming

OOP methods have also been used up to now - because there is
hardly any other way. At this point the OOP possibilities of Snap!

About...
will be explained in more detail. Please refer to the Snhap! Ref-

Reference manual
erence Manual, which provides a concise explanation of the | Snap! website

Download source

procedures. You can find it by clicking on the Snap! icon at the
top-left.

The blocks that are important for the OOP can be found in the
Control- and Sensing palette, but also the context menu in the
sprite area has to be considered. The lower blocks of the control

palette are used for "dynamic" management of sprites, the _show
Hegapi ot o L . duplicate
menu for "static". This difference is important because it is clone

assumed that only the static clones should be permanent, the delete
parent...

others are deleted when you save and are not even displayed in export

the sprite area.

Snap! works with objects called sprites all the time, of course.

They have their own attributes (e. g. position, direction, cos- S oeon
directi
tume, etc.) which can be accessed with the help of different Costume

costume name

blocks. The my <attribute> - block delivers the whole palette,
the <attribute> of <sprite> - block knows the most important
ones and displays the local variables and methods of a sprite.

To select a local method, we place the pro-
totype of the object on the right side of the
<attribute> of <sprite> block and then se-

lect the desired method. The block returns the code of the method, which can be recog-
nized by the grey ring around the method name. We exe cute this code in the context of a
sprite that has something to do with the code: usually the prototype, a clone or a copy of

it. This can be done using several blocks, e.g. ask:

Using the clone command from the context menu of a sprite (see above) we can create
additional static clones. These are distributed randomly in the output window. Dynamic | == =~ clone of mysei | J

cloning also creates new sprites, but all at the same place. If you save the project and re-
load it, the statically generated clones are re-created, the dynamically generated clones
are not.1®

An essential aspect of the OOP is inheritance. In Snap! this is based on Lieberman's dele-
gation model'’, which works with prototypes (i. e. concrete objects, non-abstract classes)
and clones and modifies them if necessary. We will first illustrate all the procedures using
simple examples, after that more complex ones.

16 This is a real advancement: with many clones, it is often tedious to get rid of them without
destroying the project.

17 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems, ACM SIGPLAN Notices, Volume 21 Issue 11, Nov. 1986

7.1 Anne and the Filing Cabinets 48

7.1 Anne and the Filing Cabinets

Contents:

1. prototypes, copies and clones
2. static creation of clones

3. accessing local methods

We draw the costume of an elegant chest of drawers and
create a sprite of this name. The chest of drawers contains
a local list variable as a data store, which we represent
through this same chest of drawers. We provide them with

local access to the data by implementing the methods put
<data> and get. This results in a simple queue. We can write any content into the list and
remove it from it. Both methods and the variable are indicated by the <attribute> of
<sprite> block.

We want to use two of these data stores. We can either make copies or clones of the pro-
totype. In the case of copies, the contents of the list are also copied so that we have several
lists. For cloning, a reference to the list is generated, so insert operations, for example, all
affect the list of the prototype. You can see this by the brighter representation of the var-
iable block. To obtain independent lists, we must break this connection after cloning, for
example by resetting the list: set <content> to <list>. We decide to make copies and cre-
ate two of them, the sprites Papers and Souvenirs with slightly changed costumes. For
these we need external access.

¥ position
¥ position

direction

costume # ——
costume name sei femp |to item K of (content
Sz [Ilelete @K of | content

content

else J

|—report |nnﬂ1i ng

show

duplicate

clone
delete

parent...
export. ..

7 Object-Oriented Programming 49

We get help from the IT representative Anne. Anne can see the existing methods on other
sprites, but how can she access the data stores? There are several options available in
Snap! for this purpose, both for Commands and Reporters.

Find another sprite's method:

- Select Sprite (prototype if necessary) in the right input field:
- Select method in the left input field:

X position
y position
direction
costume #

(9put | of Cainet

costume name

The call yields the code of the method:

[9put § of Cabinet

Run a local method of another sprite:

Parameters are passed in sequence in the fields after "with inputs". They are inserted in
the spaces of the method header if it is clear which method is executed at all.

Commands

with tell: Anne transmits the method header with the corresponding parameter
values (here: coral necklace) to the object in question (here: Souvenirs).
The called object follows tell.

tell Souvenirs (o] |9 put lf | of Cabine! | |with inputs

with run: Anne stores the object to be called in a variable (here: papers). She re-
quests this object to execute the transmitted method with the corre-
sponding parameter values (here: customer files). The called object is
named in the input window of the of - Block.

set papers | fo/ item of [my othersprites

run | Y put] of papers with inputs

Important: First the method must be selected by specifying a suitable
prototype as object. Afterwards the variable can be inserted!

with launch: | like run, but the script is executed as a separate process, i.e. without
waiting.

7.1 Anne and the Filing Cabinets 50

Reporter
with ask: Since it is a call to a reporter method (a function), a value is returned.
Possible parameters are transferred as described above. The called ob-
ject follows ask.
[ask Souvenirs ffor (§ get: of cabinet
with call: Comparable to run. Again, the called object is called as a second input.
[call @ get of papers -

If attributes of another sprite are to be changed externally, this can be done as usual using
a set method. But it also works directly: we execute the set <variable> to <value> block

in the right context:

run || set to] |- of Papers | |with inputs list § 4 8

And of course we can call the standard blocks.

tell Souvenirs |to| move @[steps

ask Souvenirs | for |/ touching edge |2

Anne, as a well-trained IT representative, of course can issue such commands, but a normal
user cannot. Anne therefore makes new global blocks available, which have the additional
parameter of the filing cabinet to be used. This greatly simplifies use throughout the entire
system. Anne is happy.

store | content in cabinet | cabinet name

|

| get data from cabinet | cabinet name

il_' cabinet name

8 ask Papers (for (§ get’ | of Cabinet

if © cabinet name = EINEIIH

G210 8 ask Souvenis (for (@@et | of Cabinet

report

if cabinet name - Papers |

- (I e

if - cabinet name = SIS

to IR | of Cabinel niﬂlhpuism<v

[get data from cabinet

| store in cabinet

7 Object-Oriented Programming 51
Tasks
1. Implement access control for the filing cabinets either at the cabinets or at the IT
representative
by password request.
with user lists and associated passwords.
2. Process the data for yourself
by introducing plausibility checks.
with encryption.
with use of data structures like lists, rows, stacks, queues, trees, etc.
3. Store the data appropriately in text files.
4, Organize a data center that stores, backs up and organizes the data of a company

(school, family, etc.). Define access rights and methods and implement the proce-
dures.

7.2 Magnets 52

7.2 Magnets

A

Contents: = .-;. N

ol
e prototypes and clones =t} o= N
e dynamic creation of clones = ?

N\
\
\
\

A Y

‘\
-
S

e accessing local methods

&

)

As a very simple example of how to deal with ob-

jects, we select a magnetic field whose orienta-
tion near a "north pole" is indicated by "elemental magnets". Those little things should
point to the North Pole.

So, we draw the big magnet without any functionality (you can only push it through the
area) and a single small one. We provide it with the required properties and clone it as
often as necessary.

Pointing to the big one is easy. If an elementary magnet receives the message "come on!",

it constantly aligns itself to the north pole. =

Cloning is a bit more complicated, because we point towards Big Magnel

naturally want to distribute the clones in the

image area, like this:

The small magnets are distributed in the left
image area - but only if a clone yourself at <x>
<y>- method is available. We can write it using
the new knowledge of method calls of other
objects.

We write the method as a block of the elemen-
tary magnet. In the method we create a clone

and assign it to a local variable. We send the : . —
script variables newClone
clone to the position indicated by the parame-

ter values, rotate it in any direction and let it set newClone | o (Eanciag mysel |

appear. Ready. tell newClone Il:l|l-.g0 tox: (% y:(y

Dealing with many dynamically generated

tell newClone to| point in direction pick random @ to P

clones is extremely simple: click on the red stop
button at the top-right of the window and eve- = ©IFETE TOEfy o 4= 10
ryone will be gone again. And because dynami-

cally generated clones are not displayed in the sprite area, their scripts are really fast. If
you move the large magnet, then all elementary magnets are realigned - immediately

Task: Add a "south pole" to the "north pole" and determine the direction of the force
on the elementary magnets at their positions. Align the elementary magnets in this field.

7 Object-Oriented Programming 53

7.3 A Learning Robot18

Contents:

e prototypes and clones

e overriding methods

e accessing local methods

Another example of delegation inheritance is a robot with four touch sensors. If one of
these comes into contact with a hindrance, the robot changes its direction, but also has a
new dent.

We use a drawing program to draw a picture of a world that is bounded by black walls and
in which there are some black obstacles. For reasons we will soon get to know, we spray a

diffuse red fog around the objects and along the walls with the spray can. We put Roby
into this world - as a small circular sprite. Furthermore, we draw an even smaller blue sprite
with a predicate touching the wall?, so equipped with a touch sensor. We clone this sprite
three times and then attach the four sensors to the robot. We call them according to the
cardinal points TouchSensorN, TouchSensorE, ... etc. An aggregation occurs. We equip How to make aggrega-

the robot with two local variables vx and vy, which describe the velocity components in tions is shown in the

these directions. If a touch sensor now signals a wall, the corresponding velocity compo- ~ Next chapter.
nent is changed. We get the following configuration, in which Roby moves between the

obstacles - as already mentioned, with many dents.

; J
i ask for - Q touching the wall? of TouchSensorE | | \

set vx | to @G x (vx

Berithrun Berihrun Beriihrun Berithrun =~ Roby

8 The example has as a template the walking robot of Prof. Florentin Worgdtter, Bernstein
Center for Computational Neuroscience Gottingen, described e. g. in
http://www.chip.de/news/Schnellster-Roboter-lernt-bergauf-zu-gehen_27892038. html

7.3 A Learning Robot 54

Now the red spray paint around the obstacles and walls comes into play. This shall identify
areas in which an ultrasonic sensor picks up echoes from the objects. We therefore equip
the robot with four ultrasonic sensors that react to this red color. We call them USsenorN,
USsensors, ...

The robot should learn that an ultrasound echo often precedes a collision and that it is
therefore better to reverse if this echo is heard. We therefore need a mechanism that de-
tects that there was an echo before a collision. One way to achieve this is a counter in the
ultrasonic sensor, which is set to an initial value (here: 100) when it detects red color (i.e.
an echo). This counter is continuously counted down to zero - and if necessary, it is in-
creased again before. If this counter has a value greater than zero in case of a collision, the
echo has been received shortly before.

The ultrasonic sensor sets a counter to an initial
value. Then it is counted down to zero.

) direction of time]

The touch sensor dissolves. Since the coun-
ter still has a value greater than zero, an
echo was received shortly before.

This constellation initiates a learning step that takes place in a neuron. It has two inputs,
which come from the assigned touch sensor or ultrasonic sensor and each with a weight,
as well as a threshold value. The input from the touch sensor has the weight 1, if a signal
of e.g. strength 1 is received from this line, it is multiplied by the weight 1. The result is
greater than the threshold value (here: 0.5) and the neuron "fires". The weight of the US
sensor initially has a value of 0, which is increased whenever the touch sensor detects that
the counter of the assigned ultrasonic sensor has a value greater than zero in the event of
a collision. If there are enough such small learning steps, the product of weight and signal
of the US sensor also exceeds the threshold value of the neuron and this fires in this case
as well.

impulse from

the US sensor amplification factors

per input

impulse from

touch sensor 0.5 l

the neuron

7 Object-Oriented Programming 55

We are now realizing this form of Pavlovian learning.

The ultrasonic sensor works exactly as described above. The local attribute counter can be
accessed directly with the <attribute> of <object> block. The actual changes therefore
take place in the touch sensors and the four assigned neurons. Since these are clones of
the only prototype, it is almost enough to make the additions only in this one. They take
over the changes because they inherit the methods of the prototype. However, we still
must specify which element of the four groups the sprite should react to.

When touching a wall,

¢ touching the wall? . .
it is still necessary to

and - color is touching ?

if - (counter | of USsensorS = [0

determine whether

the associated ultra-

N ek | §increase weight of NeuronS | [

report color

sound sensor has trig-

is touching ? gered "shortly be-

fore".

In the clones, we overwrite the inherited "pale" method by adjusting the associated sen-
sor. This also makes the pallor disappear. Previously, we cloned the ultrasound sensor and
neuron three times and added the four new purple ultrasound sensors and the yellow neu-
rons to Roby. He looks like this now:

0 The neuron still
is firing?

report
[@sk Touchsensorw | for

need a predicate
is firing? which
works as de-

¢ touching the wall? of TouchSensorw

< weight > [LT
I['ilSII USsensorW | for

scribed above.

@ an echo is heard? of USsensorW

Finally, we change Roby's

behavior: he changes his

sef vx | to/ pick random to

direction when the

set vy | to(pick random to

corresponding neuron fires.

set vy |to @ x vy

J
1ll ask NeuronS | for - 9 is firing? of NeuronN \

set vy |[to &P % vy

- J
[} ask NeuronE |for - @ is firing? of NeuronE l

st vx

to | @G = wx

1l ask NeuronW | for - @ is firing? of NeuronN |

to (G X wx

sel vx

change x by (¥X

change y by (wy

when clicked

set counter |to 0

@ an ccho is heard? 3
else
if - (counter > [i

by &P

change counter

'd increase weight

if - (weight <
L 0.1)

c-himge weighi

inside the neuron

Roby with sensors
and neurons

7.3 A Learning Robot 56

Roby now looks for his way, first between the obsta-
cles, then along the "echo range".

] 0
(=] (=] (] (=] (=] @“

USsensor USsensor USsensor USsenso Berithrun Berihrun NewronN — NewronS

“ De O

NeuronW MewronO Berihrun Berihrun Roby

Tasks

1. Give the program an interface that makes it easy to change the main factors: its
speeds, weights and thresholds.

2. Introduce additional sensor types and other events in addition to the collisions.
a: Let Roby find correlations between sensor values and events in different "worlds".
Roby thus adapts to its surroundings.
b: Discuss other ways Roby adapts to a changing environment.

3. Discuss the need for "forgetting" and possibilities to realize this process.

4, Replace Roby with a mouse with a cheese sensor. Put it in a labyrinth. Let it look
for the cheese there.

7 Object-Oriented Programming 57

7.4 A Digital Simulator

Contents:

e aggregations

e static and dynamic creation of clones
e use of the launch block

6 - o x
A Snap! Build Your Own Bl % { €) Deepl Ubersetzer x
< C | & Sicher | hitps://snap.berkeley.edu/snapsource/snap.html b4

Y & I+ digital simulator
CH i |

L A deggeve
Scripls Costumes

[inherit |

= i von { omsiion LT

i front of B [2) connection 12| |9 delete connection > of (connection
(=sigpisin) with inputs (L0 40

all but first of B —
(2] 2 £7) |9 draw line from @ @ to @ @ with color @ of

with inputs §7 it y position I x-position | of (connection

length of &
<@ contains

[add @0 B N
[delete XD of B B Y Y W

[insert [at € of B | Lodi di db di-dil 4

| replace item @S of A (p
ULy position] v position] - T T
y-postion | of (theoutput JERTY = &= B L=

I 121\ theoutput |3 | 9 new connection > of (theOutput
— L with inputs (T <
reverse B -

remove duplicates from w
R — set connection | to -
(sort B ordering with |
- otherwise mark

[set theoutpul | to the connection as
e emply p
| set theinpul | to

(9 operate

A digital simulator is a program that can be used to simulate digital circuits. It consists of
switches, LEDs and gates, in this case only NANDs (Not AND) from which all other circuits
can be constructed. Different types of sockets are located on the components, which are
used to transmit signals.

We can display the correlations clearly in a (simplified) UML diagram:

Sprite

LED switch | socket | 420 gate with two inputs and one output

1/‘\\ 1
/ \| |

input ’— output | NAND AND

OR

XOR

In this case, the inheritance takes place via delegation.

7.4 A Digital Simulator 58

7.4.1 Sockets and Connections

As the "mother of all sockets (jacks)" we draw a heutral socket which
serves as a prototype for input and output sockets. All sockets have a
value that can be O or 1, but inputs get their value from the cable or, if i (value =[]
they are not connected, we set them to the value 1 for technical reasons. :
They represent the result of a logical circuit. All jacks inherit from the ===
neutral jack the method show yourself, which represents their value, as

well as a local variable named value.

Using the context menu (clone), we create two clones of the neutral
socket, which serve as prototypes for inputs and outputs.

Sockets should be connected by clicking on an output first and then an input. If only the
input is clicked, then its connection to an output is deleted - if it exists. Connections are
presented only as lines on stage. If the switching elements are moved afterwards, the lines
remain "free in space".*®

Inputs can be con-

nected to one output

set thelnpul | To my sel

it not = feroy

teltu @ delete connection >» of | connection
with inputs £7 700778 «p

tell Fen = to 6drawinefmm..ln..wiilmlnr.

with inputs EITETT) CITZT)

yposition of connection rﬁib

at the most. For this,

they get an additional
variable connection.
Outputs can distribute

their values to several

inputs, therefore they

receive a list variable x-position | of (connection

connections for the

of Pen

ﬁnitch to costume value-0

]

switch to costume value-1
else

switch to costume neutral

-

Delete the old
connection logically
and graphically e

connected inputs. If an

if - not { theOutput

output is clicked, the
global variable the-
Output receives this
output as its value. If

sel conneclion
2) | 9 draw line from @) @ to @ @ with color @

with inputs CIIZIT) QIZEI)
ostm ot thcoutrst [

wposition of (theDutput

an input is clicked, it

of Pen

-

If an output has

been selected ... P

b4
. enter this output

as a connection
and have it drawn

7~

updates the connec-

(= ¥ theOutput L) | © new connection > of theOutput
tions. with inputs £ 0T84

else

to

to
to

sel connection

5

-

__. otherwise mark
the connection as
emply.

set theOutpul

thelnput 7~

set

@ operate

19 The representation and especially the arrangement of lines is an independent problem.

7 Object-Oriented Programming 59

For outputs it’s a bit easier: they provide the options for entering and deleting connections
- and wait for what comes.

9 delete : connection

9 new connection /(input

item (i of (connections = (input

add (input to (connections

set conneciions

7.4.2 Switches

Switches are used to change output values. We create two costumes (
representing the open or closed state. At the right end, an output
socket is connected, which either has the value 1 (status "open") or O
(status "closed"). The socket is obtained by cloning the output socket.
Afterwards we push the sprite to the correct position at the switch.
Now it must be anchored there. To do this, we move the sprite symbol
from the sprite area over the switch in the output window. Its outline

o remove duplicates from (connections

rer QFO: H'

e dh A

Ausgangl Ausgangl Buchse NAND

lights up when it notices that it is meant. This means that the socket is
attached to the switch: it is the anchor of the resulting aggregation.

Since we want to use the com-
ponents of our digital simula-
tor via mouse, it is advisable
that the switch
mouse clicks. This is easy to

if* | costume-name | of [:' my

Sl switcheclosed

reacts to
switch to costume switsch-open

l_s\el value |fo]

L achieve: he changes the cos-
else

;initch to costume swiich-closed)
— this, he needs to know what
l_s\ei value | to [

4 he looks like: with <costume-
name> of <my self> he gets
the current costume.

tume with every click. To do

launch | § operate

of | item @ of (my parls

We still need a mechanism to control the reactions of the parts, this time of the output
socket. Since it should be transferable, the procedure must be generally applicable. We
therefore equip each component with an operate method and a variable value. If the state
of the switch changes, the value of the switch changes. Finally, it calls the operate method
of the output - this is the first element of the parts list. We use the launch block to keep
the program running.

Generate an aggrega-
tion of sprites: the
socket becomes ele-
ment of the switch's
parts list and are dis-
played on the sprite
symbol of the switch.

With detach from ...
from the context menu
of the socket, they can
be removed from the
switch.

—-‘/0-.

7.4 A Digital Simulator 60

7.4.3 Gates

To create gates, we first introduce a prototype Gate with two inputs and one output. It
also contains a variable switching time. We attach the necessary sockets as learned with
the switches. Other gates such as AND, OR, XOR or NAND can be derived from this gate.
For the NAND we create a clone of the Gate named NAND and provide it with an adapted
costume.

The prototypes derived from the Gate inherit the operate method of the gate and the
instance variable value. Both are of course superfluous, because the gate has no proper
function at all. We therefore leave the method blank and overwrite it in the derived
prototypes. (If we forgot something, we can create variables and methods in the prototype
afterwards. These are immediately passed on to the clones. Inherited attributes and
methods appear slightly brighter in clones than their own. If they are overwritten, they get
the normal color.

NAND's operate method is easy
to write. The my <parts> block
shows us the inputs and outputs
of the NAND. We can read out
their values or set them like at
the switch. We use the launch valie |of| stem of (mmy parts
block instead of the run block
again.

value | of | item @ of | my parts =% and

launch |¢_nperi|te of | item of (my paris

7.4.4 The Pen

The pen provides only one simple
method for drawing straight lines in
different colors on stage. He does not
have any other tasks.

set pen color to |

r

set pen size to &P

set pen color to

set pen size to

pen up
gin tox:(x1 y:(
pen down

gh tox:(x2 y:(

© © 9 9

7 Object-Oriented Programming 61

7.4.5 LEDs

As a very simple example for adding new compo-
nents to the system, we introduce the prototype
of an LED (light emitting diode). This receives |~ USRI I
two costumes for the values 0 and 1 as well as

. !':\Nitl:h to costume value-1
one input. Because the input is familiar with the %%

system, the LED can fully rely on them and limit [o e

itself to what LEDs do - light up. Nothing more
can be done.

7.4.6 The Interaction of the Components

The activity is to pass through our network in a wave-like manner in a feed-forward pro-
cess: Each part notifies the connected parts and calls their operate method when some-
thing has changed. For example, if an output socket is located on a switch, the output's
operate method is called when it is clicked and therefore changes its value. This in turn
activates all connected inputs. Each of these inputs calls the working method of the gate
on which it is located - but only if its value has changed. If not, the wave is stopped here.
So far, the gate can only be a NAND. It waits its switching time, reads the values of its
inputs and activates the output - etc.

We take the operate methods of input and output as examples.

script variables | oldValue

set oldValue |to value

if © not < my anchot =1 |

if - connection =

set value |to] set value |tol value | of (=

else

set value to value of connection

9\ show yoursel

sef value fo [

if <JJ|J_i - (oldvalue = value and <JJ|J_i ¥ | my anchor else

set value to]
[EUT N (Qloperate’ | of (L

.

@ show yourself

set | to]

repeat unfil - ‘i > length of (connections

launch éoperate of (item (i of (connections 2

clllimge i by &9

7.4 A Digital Simulator 62

7.4.7 Tasks

1. Create prototypes for the following gates according to the model of the NANDs:
a: an AND b: anOR
c: aXOR d: an Not-OR (NOR)

2. Create a prototype for a NOT gate. Is has only one input and one output.

3. Create a prototype for a clock. The clock frequency should be adjustable.

4. Create a prototype for RS-FlipFlops (RS-FF). Inform yourself beforehand about how

they work.
5. Create a prototype for JK-MS-FlipFlops (JK-FF). Inform yourself beforehand about

how they work.

6. Our gates react only after a switching time which can be different. Why actually?

8 Graphics 63

8 Graphics

Contents:

e simple turtle graphics
e recursive curves

e acceleration of output

e implementation of JavaScript functions

8.1 Line Graphics

In Snap! each sprite has a (virtual) pencil to draw on stage. The blocks for this can be found
in the Pen and Motion palettes. In the first one the pen is controlled, i.e. raised or lowered,
pen color and width are adjusted, ... The second one contains the commands for moving
the sprite. In this movement, the pen leaves traces, which form the generated line graphics
- and which can be further processed as pentrails.

If we choose the already known "pen" as costume, the following script creates a simple

circle.

The example demonstrates the effect of the warp block. While
without it the pencil draws the circle quite comfortably, the fin-
ished circle appears almost immediately with warp block. The
reason is that in the first case, the state of the system is shown
again after each block execution, whereas in the second case
this is only done at longer intervals. The difference is "dra-
matic". Similar acceleration can be achieved using the Turbo
mode option in the Settings menu.

With the help of turtle graphics, some of the familiar recursive curves can be drawn very
elegantly. We start with the snowflake (or Koch) curve. It is created by repeatedly putting
a triangle in the middle of a side until the side is too short for this process. In this case, the
side is drawn as a straight line. A snowflake is created by assembling an equilateral "trian-
gle" of three such sides.

Pen palette

=

| pen up
.selp-ulcnlnrtn
.dlangepulcnlnrhy
.selpenl:nlnrtnn

| change pen shade by €5

set pen shade to EEEP

change pen size by EP

.Shﬂ"]

[#m

pen trails

Motion palette

[move @B <tep=
[turn b @B degrees

turn $ degrees

point in direction BB

point towards

ga to x @D v: E

gao to

glide &P secs o < & v: &
change x by 1}
selxlnn
change y by §ED

set y to

.i:lnneﬁ-e,bcu.l'lce

. x position
. ¥ position
M ' direction

I+ Schneeflocke

Language. ..
Zoom blocks...
Stage size...

O Input sliders

= Turbo mode

O Visible stepping

8.1 Line Graphics 64

draw snowflake side of length n

n<2
true false
draw line of draw snowflake side of length n/3
length n
turn by -60°

draw snowflake side of length n/3

turn by 120°

draw snowflake side of length n/3

turn by -60°

draw snowflake side of length n/3

The process can be translated directly to Snap!:

the snowflake curve
[_Tlm snowflake side (n # = 100

if-'n <H

move ' m steps

draw snowflake side 'n [/ €

| draw snowflake side ' n
turn (_) §F) degrees

To construct the Hilbert curve we use a version according to Lészlé the generator
Boszorményi®®. It is one of the area-filling curves, which as a gener-

ator has a kind of box. The corners of the box are located in the

centers of the four quadrants of a square. In the next step, this box

is reduced by half and four versions of it are rearranged in the quad-
rants in mirrored or rotated versions. Finally, the smaller boxes are

connected to each other as shown on the next page. its position in

In the Boszorményi version, the boxes are marked with A to D de- the square

pending on orientation and direction of rotation.

Ai: D — Bi: Ci: ﬁ; Di:

\ 4 > »

20 http://bscwpub-itec.uni-klu.ac.at/pub/bscw.cgi/d11952/10.%20Rekursive%20Algorithmen.pdf

http://bscwpub-itec.uni-klu.ac.at/pub/bscw.cgi/d11952/

8 Graphics 65

The Hilbert curve is composed of these elements by starting with A

and "twisting" the other elements. Parameter i specifies the the scaled-down
recursion depth and thus the size of the elements. It is "counted copies and their
down" to zero. connections

point in direction g2
move length

b

point in direction

point in direction

move (length steps move (length steps

The call takes place as described after the sprite is sent to the starting point right-up. The
final length of the sections to be drawn is determined from the recursion depth - and then
it is drawn. Here too, the effect of the warp block is drastic.

go to x: §EP v:
rset recursion depth | to [
5et length | to

repeat recursion depth

sét length | to | length J @3

.\ recursion depth

8.2 Pixel Graphics and RGB Model 66

8.2 Pixel Graphics and RGB Model

Contents:

e single pixel access

e RGB colors

e implement your own pixel graphics library

Turtles draw on stage, but pixel graphics are only possible on costumes of sprites. This is
not a big limitation, because with help of the pentrails block the current state of the stage
can be transformed into a costume, which can be drawn back on stage if necessary. Draw-
ing on costumes has the advantage that JavaScript commands related to this area can be
used without knowledge and consideration of the rest of the Snap! program code. If re-
quired, you have a small playground where you can write programs in the text-based lan-
guage JavaScript within the graphical environment of Snap!. This also makes sense if, for
example, blocks are missing or if speed is important. We want to implement pixel graphics
in two ways: first using the pixels library provided with Snap! and then directly using Ja-
vaScript blocks.

8.2.1 Pixel Graphics with the Pixels Library
We import the pixels library (File = Libraries = pixels) and get some new blocks. The te > with B
palettes result from the block colors. These blocks allow us to access the pixels of a cos-

First of all, we need a costume: beautiful white and big. We set the stage to 800x600 pixels opy of >

i

H

and get a copy of the empty stage. So, we know the dimensions of the costume - just 800
x 600, and after creating the corresponding variables we have found the beginning of our show picture = |
script. In the copy of the stage costume we find the individual pixels in form of a long list,

which contains both the RGB values of the costume and the transparency. pixels in >
8 Y [pixels
W wsﬁlMED 480000 A 5 c D
1 25 265 255 255
set _&l to pixels in { costume)) o 2 ses s
I\mj 2 255 255 255
M') 4 285 255 255
5 285 255 255
L] 285 255 255
7 285 255 255
&8 255 255 255
. . . a 255 255 255
Another way to get a corresponding costume would be to create it in a 1 2w | 2% | %
1" 265 255 255
graphics program as a white rectangle and import it. As a third possibility 12 2 255 255
12 255 255 255
we will write a small JavaScript method. K 2 | e | 2

255 255
255 255 255
255 255 255
255 255 255
255 255 255
265 255 255
265 255 255

=
[x

Now we can manipulate the values

of the list pixels. As an example, we
set the green and blue values to

255 255 255
255 255 255
255 255 255
255 255 255
255 255 255
255 255 255
265 255 255

zero. Since 480000 values have to
be changed, the use of the warp
block can do no harm.

fEE

=
b

8 Graphics 67

Up to now, the changes have only taken place in list pixels. They still must be

update | costume with | pixels
"added back" in order to get a visible change. If you want the change to influence

the stage, you can copy it with the m - block.

The pixel list is well suited for counting colors in a costume, for example. It's not so easy to

switch to costume ' costume

access individual pixels given by coordinates. We therefore write two blocks to set or read
the RGB values at a (x|y) position.

setRGB (r # = 355 g # = 180 b # = 100 getRGE from | pxis :

y# =1 in (pods :

script wariables | pixel
replace item | Yy — n

b

set poel | to ftem [y —

The setRGB block can be used to draw very nice color gradients, e. g. the RGB cube with
the front, top and right side.

The RGB colour cube is composed of three sides.

draw front side on | costume - .draw top side on | costume ;-

script variables | r a b script variables r

warp warp

set b |to] set 1 |to B3

| set g to[] lzetlc |t 0

repeat €D repeat €9
set1 to 0} set g to]

(245 B LD /(2)

F— . & Y
setRGB (1 (g (B at(@D + g setRGB (v (@ (b at| (50) + (b VA€
I on | costume
change 1 | by &P :

change g | by §B

change g | by &9

switch to costume costume ’
switch to costume | costume

draw right side on | costume }-

:';cript variables ' r a ' b
warp

;el g | to B3

| sef b | o [J

repeat €3

set 1 |0 []

setRGB(r (g (b at| @ +(b [rZ |f__m— r
on | costume

change 1 | by &9

switch to costume | costume

8.2 Pixel Graphics and RGB Model 68

set costume |to produce costume

pen up

gintnx:ﬂv:ﬂ

dmw front side on ' costume

draw top side on ' costume

draw right side on ' costume

8.2.2 Pixel Graphics with an own Library

We want to create blocks using the JavaScript function block, which we use to exploit
some of the graphical features of JavaScript.? First, we create the capability to "inflate" an
existing costume to a desired size. Since all old content will be lost in this change anyway,
we fill the resulting rectangle with white color.

set size of | costume 7> to

JavaScript function [B0 AN

costume.contents.width = x;
costume.contents.height = y;
ctx = costume.contents.getContext('2d");
.beginPath(};
.Fillstyle = new Color(255,255,255).toS5tring();
FillRect{e,8,x,¥);
.closePath(};
stroke();

Sometimes we need to know the dimensions of a costume, but we don't necessarily know
them. So we create the capability for this.

get width of | costume 7= get height of | costume =

JavaSeript function [PR 3 {
¥ = costume.contents.getContext('2d");
return costume.contents.height;

JavaScript function [MR ¥ {
¥ = costume.contents.getContext('2d');
return costume.contents.width;

21 The pixels library provides good templates for this.

8 Graphics 69

In this costume we again want to be able to access single pixels .

getRGE from || costume setRCB r # = 255 g # = 180 b # — 100 at 'x#=1

Yy#=1 on | costume >
war Ctx = costume.contents.getContext(2d"); -
data = ctx.getImageData(x,y,1,1);

return new List({new Array{data.data[e@], data.data[l1], data.data[2]});

JavaScript function (J FI (1 3 1) £
ctx = costume.contents.getlontext('2d");
beginPath(];
ctx. lineWidth = 1;
ctx.strokeStyle = new Color(r,g,b).tostring();
ctx.moveTo(sx,y);
ctx. lineTo{x+1,y);
closePath();
stroke();

And while we're at it, we also draw lines, filled and empty rectangles and corresponding
circles.

draw line from xa # — 1 ya# =1 to [(xe #
ye £ — 100 color (r # = 255 g # = 1238 h # =

draw rect behween xa # =1 ya# =1 and xe # = 100
ye # — 100 color r # = 255 g # = 128 b # = 100 on

costume 2> width (width £ =1 width ((wndth # = 1

JavaScript function (5 7 51 M & F1 7 0 PO £
ctx = costume.contents.getlontext(2d’);
beginPath(];
ctx.lineWidth = width;
ctx.strokestyle = new Color(r,g,b).toString();
ctx.strokefiect{xa,ya,xe-xa,ye-ya);
.closePath();
.stroke();

JavaScript function (= 8 B2 /2 @ A1 0 CEE O () £
ctx = costume.contents.getContext('2d");
beginfath(]);
ctx.lineWidth = width;
ctx.strokeStyle = new Color{r,g,b).toString();
ctx.moveTo{xa,ya);
lineTo{xe,ye);
closefath();
stroke();

fill rect between 'xa# — 1 ya#£ =1 and xe & — 100
ye £ — 100 color (¢ £ = 255 g == 123 b#— 100 on

draw circde (x # = 100 y # =100 radius (radius # = 50 on
costume 2> color (r # = 128 g # = 100 b # = 100 width

costume > width = 1

JavaScript function ([[[ETINS FEEOOS O MY O 0T) £
ctx = costume.contents.getContext(2d’);
.beginPath(};
ctx.lineWidth = width;
ctx.stroke5tyle = new Color(r,g,b).tostring();
.arc(x,y,radius,,6.283185307179586476925286766559) ;
.closePath();
.stroke();

JavaScript function (= JH H A3 A0 ZEmE) {
ctx = costume.contents.getContext("2d");
.beginPath();
ctx.fillStyle = new Color(r,g,b).toString();
FillRect({xa,ya,xe-xa,ye-ya);
.closePath();
.stroks();

radius | costume

fill circle (x # = 100 y # = 100 radius | radius # = 50
costume > color (r # = 255 g#=—10 h&=0

JavaScript function ([] ETE EEES A A A) {
ctx = costume.contents.getlontext('2d’);
.beginPath();
ctx.fillstyle = new Color(r,g,b).toString();
ctx.arc(x,y,radius,®, 6. 263185387179586476925286766559) ;
ctx. Fill{};
.closePath();
.stroke();

Export blocks

update > with B

current costume

with inputs x | y | radius costume

copy of >

show picture B

getRGH from > at &P €9

setRGE €D €ED €D =t € € o >

draw Ii;;fmmn“kum@culor@@ﬂm >
width

These blocks are stored in a separate library (File = Export blocks...),
where we select which blocks are to be included. With this we can create

pixels in >

our color cube again by | s dram ret betuveen @B €9 <nd GED GED coior €D GED ETD o0 >

replacing the setRGB
method with the new

fo' copy o urre!

fill rect between B &P and EED EED color € € EED on >
draw circle 5D EEEP radius EEP on > color EEEPD EED EEP width]
fill circle LD G radius EEP on > color €D & G

get width of >

get height of >

set size of > to @ @

set size of (costume to (500]

version.

go to x: QD v: €D

draw front side on ' costume

draw top side on ' costume

zeichne Vorderseite auf >

zeichne Oberseite auf >

|
|
|
|
M
/]
/]
|
|
/]
M
/]
/]
1/}
/]
|
|
|

zeichne Rechteseite auf >

draw right side on ' costume

8.3 The Light of the Old Stars 70

8.3 The Light of the Old Stars

In normal galaxies, the young stars are usually "born" in the arms of the galaxies, while the
old stars throng in the centers of the galaxies. Since young stars tend to shine in the blue
range of the spectrum and old stars tend to shine in the red range, this can be checked
well. We choose several galaxy pictures as costumes. We copy the current costume into
the variable costume, create a pixel list called pixels and "map" a function red value > n
in..., which displays pixels with a red value larger than the parameter n as pure red values,
the other black. All these elements are now well known from other examples.

sel current costume ‘
set pies |to pixels in costume |

set to ﬁfred chanel > /750 in[= |

update (costume with (pixels.

For the galaxy NGC 5457 we get the following result:

With M101 it works also!

8 Graphics

71

8.4 A simple RGB Color Mixer

For three color values red, green and blue, we want to represent the pure
color channels as well as the mixed color with correspondingly filled rectan-

“green [EE0) [blue 119 B

= normal
o large
® slider

gles. To do this, we import the library with the JavaScript RGB methods and @ slder min.
slider max...
generate three variables for the color channels, which we display on the import_.

screen in slider format. As maximum values we select 255.

export...

We create a costume from the pentrails on stage and write a script for the stage, which

reacts on clicking (more exactly: releasing the mouse button on stage). If we now change

one of the sliders for the variables and then let go of the mouse button first on stage, e. g.

below the variables, the script will be executed. 22 It works pretty well.

The coordinate system of a costume is oriented differently from that of the stage: it has its
origin in the top-left corner and the y-axis is directed downwards. So, we have to select the

¢ —uD

position of the rectangles to be drawn in this coordinate system.

First, we draw a white rectangle that covers the entire stage. This deletes any old repre-

sentations. Then we draw three rectangles above the variables in its colors and, to top it

all off, a rectangle in the mixed color above all. Afterwards, as is customary now, the cos-

tume is switched.

[red E?J [nreen . J [blue :.mj

set costume | fo pen trails

fill rect between) P and color 255 W11

y =

fill rect between @) and &P color (red .) &P on
fill rect between and color) (agreen P on
fill rect between and color) &P blue on

costume

fill rect between &P € and &ED color (red (areen (blue on

switch to costume (costume

22 The procedure corresponds approximately to the reaction to the OnChange event of other

programming languages.

8.5 Drip Painting 72

8.5 Drip Painting

One of the methods of bringing randomness into modern painting is to spray paint blotches
on the canvas with a brush. The impinging drops of paint are further split upon impact,
resulting in a random pattern. We want to simulate the drip painting process - and that is
not so easy.

We try to do this with a simple but computational very intensive approach: n random cir-
cles with slightly different colors are created within a rectangle, which become more trans-
parent towards the edges of the rectangle. This is the place where the ink thickness de-
creases. Since N is in the order of hundreds and we want to distribute a few thousand
drops per image, we transfer the drop drawing to a JavaScript function that can do this
very quickly.

As parameters we pass the coor-
dinates of the upper-left dot-
corner in the costume, the width

and height of the rectangle de- e e o lne - ol [
var ctx = costume.contents.getContext('2d’);

scribing the drop, the three RGB var radius = Math.min(br,ho)/4;

war xm = xa + br/2;

color values and the number of || "=« "
"partial drops". The function de- ! ctx.beginPath();
. . x = xa+Math.random{}*br;
termines (as is now known) the y = ya+Math. random()*ho;
dist = Math.sgrt((x-xm)* (x-xm}+{y-ym)*(y-ym)});
H - if{dist<radius) crad = Math.random{)*radius;
2D graphlc context and Calcu else crad = Math.random()*5*radius/dist;
. tx.FillStyle = Cols S@-18e*Math. d Sg-188*Math. d b+58-188*Math. d to5tri i
lates a radius for the core area of phingirmris rateaiogrrr! e S ath.randon(), randon(}).tastring();
alpha = 1 - Math.sgrt({x-xa)/br);
the drop. Afterwards, the coor- if(alpha < @.01) alpha = @.21;

ctx.globalalpha = alpha;

dinates of the image center are ctx.arc(x,y,Math.abs(crad), @, 2*Math.P1);
ctx.Fill();
i .closePath
determined, and n drops are ctx.closePath()

ctx.stroke();

drawn whose positions, radii, =

colors and transparency are se-
lected randomly.

A strongly enlarged "drop" will
look like this:

8 Graphics 73

We now distribute several thousand of these drops on the
canvas - and receive an optimistic, abstract picture of spring-
time.

when | clicked

iutnx:ﬂv:o

switch to costume (costume

n (8 10000

o e (= e s Sl
[pick random @ to [[get height of (costume . RL&L)

random &P to [P ' pick random ELP to ELP color

e
[_\Sﬂ'it(‘l to costume (costume

But of course, we can also make the color distribution depend-
ent on the position - and get some red and a lot of blue.

With some green to go with it: Untitled 37.

And of course, you can also become braver:
balancing act

8.6 Edge Detection 74

8.6 Edge Detection

In order to recognize objects in an image, it is often helpful to emphasize the boundaries
of these objects - the edges. A possible method for doing this consists of the steps 1) con-
version to a grayscale image, 2) conversion to a black-and-white image using a thres-
hold value and 3) edge detection in this black-and-white image. The first two steps can be
carried out relatively quickly with Snap! using the Map function, and the third one re-
quires a lot of computing power, so there are plenty of opportunities for coffee breaks. Or,
after we have developed the procedure in Snap!, we transfer this task to a JavaScript
function. Edge detection is a preliminary stage for object recognition. The recognition of
the license plate of a motor vehicle on a video image may be an example.

We look for a picture with visible edges and load it as a costume of our

. . . switch to costume house
sprite. Afterwards we save costume and pixel list (as already done be-
fore) in the variables costume and pixels. The width and height of the

image is determined with the functions get width and get height. set piels | o pixels in (costume

=TT e E OIS T TG f current costume

. t width | & t width of (costu
This image is to be converted into a grayscale image. We can achieve = it oF \pasnme

this step-by-step by editing the individual pixels - a typical task for the = LE TS TR I ATETE W o T
map... over function. This requires a function to be applied to the in-
dividual list elements. We call it color of... = gray. It calculates the
mean value gray of the three RGB values and assigns them to the

three color channels. It leaves the transparency value unchanged.

Since (in this case) 172800 pixels have to be edited, switching to the
turbo mode of Snap! or using the warp block is worthwhile. B
4

We want to create a black-and-white image from the grayscale image.

To do this, we specify a threshold value. All gray values greater than
the threshold value are set to white, the others to black. For this we
write a function which is executed by map... over.

8 Graphics

75

In the black-and-white image, some repair work should be carried
out: single isolated points should be deleted, line gaps closed, etc.
(see tasks). That's what we're doing without here. In the last step, we
look for edges in the black and white image. To do this, we examine

report [

the area around each pixel. If all dots have the same color as the pixel, || report EZF0¥ofol"

this is located within an area and is drawn white. If there is at least

[_;edge detection

=
| set copy

l_\s;.li to

sel heighl | to ' get height of (costume

I—s:lx to {

‘ set valuel |to item g9 of (getRGB from (pixels at (x (y
set diffierent | fo < @) false

Fs:l Xp

if item @ of (pxl T

e #

one different pixel,
we have found a bor-
der pixel and color it
black. Because pixel
value changes affect
the neighborhood,
the changes are cop-
ied to another list
copy. Finally, this list
is assigned to the var-
iable pixels.

update (costume with (copy

F

switch to costume (costume

l_crange x | by &P

8.7 Tasks 76

8.7 Tasks
1. a: Find out more about the C-curve on the Internet.
b: Try out some steps to construct the curve "by hand".
¢: Implement a script to draw the curve by Snap!.
d: Proceed accordingly for the Dragon curve, the Peano curve, and the Sierpinski
curve.
2. Display the RGB cube from a different viewpoint so that the three previously hid-
den sides become visible.
3. If you want to try some JavaScript: create color gradients and the RGB color cube
in a JavaScript function.
4, Create blue color excerpts from galaxy images and check the statements about the
young stars.
5. Change the color values iteratively, i.e. without the map function, by accessing the
individual pixels. Measure the execution times for different procedures.
6. Some painters apply the colors with a spatula. Create "spatula images" that can

"leak" in one direction and contain multiple colors. Create random pictures with a
spatula.

7. a: Inblack and white images, delete isolated pixels.
If you delete all border points in black and white images (the edges "melt down")
and then add them to all border points again - or vice versa - you can delete single
pixels, close gaps in lines, etc. by alternating and if necessary repeating the proce-
dure. Implement the procedures and test them.

8. If you want to program in JavaScript:

a: Implement the conversion of grayscale images to black-and-white images as Ja-
vaScript function. The threshold value should be given by a variable in slider repre-
sentation.

b: Implement the edge detection as JavaScript function.

9. Extrasolar planets are usually discovered when they darken their sun a little passing
between their star and the earth. Get a picture of the sun and let a black circle, the
planet, pass in front of the sun. Count the number of visible bright pixels and dis-
play the results of the planet transit in a diagram.

9 Image Recognition 77

9 Image Recognition

The following three examples illustrate a sequence in which some of Snap!'s abilities for
image processing are shown as the level of difficulty increases. Problems have been chosen
that provide access to the current discussion of digital media. They are therefore relevant
for the field of “computer science and society”.

9.1 A Barcode Scanner?®

Contents:

o different objects and communication procedures
e simple lists

e simple algorithmic structures the "laser”

e scopes of variables and methods

We want to analyze a barcode (barcode) as it is used on the labels of
goods in a supermarket by means of a "laser" (a red dot) and convert it
into a character string. First of all, let's take a look at the planned setup,
but don't overlook the very small red dot on the left side of the work-
space - that's the "laser"!

What is an EAN code?

—

1234 " 5670

The European Article Numbers (EAN) code is available in different variants. Here we con-
sider the EAN-8 code, which consists of 8 digits, the last one representing a check digit. 2*
The numbers are represented by four black and white stripes of different widths. The space
between two black lines is also part of the code! To the left and right of the barcode there
are two black and one white stripes in between as a limiter. The center is marked by five
such stripes. All have the width "1". The code has been selected so that all digits in total
have the width "7". We will not go into any further details here.

To determine the coded numbers, the laser point is guided from left to right over the code.
He "measures" the positions of the color changes and enters them in a list. From this the
line widths are calculated. Since the first three lines have the width "1", we can determine
this value quite well by averaging. The other line widths are multiples of this unit. In each
case four dashes result in the code of a number, which we determine based on the table.
The procedure can be briefly summarized in the form of a Nassi-Shneiderman-diagram.

B partly from E. Modrow, The SQLsnap supermarket, Scratch2015 Amsterdam
% see e.g. https://de.wikipedia.org/wiki/European_Article_Number

EAN-8-
Codetabelle

cipher

Code

0

3211

2221

2122

1411

1132

1231

1114

1312

1213

Ol Nl V| B[W[IN| -

3112

9.1 A Barcode Scanner 78

determine the x positions of the edges of the black and white lines

calculate the line widths, delete the markers

calculate the eight four-digit codes

calculate the EAN code

Implemented as Snap!-script of the laser we get:

If | get the message "start” ... r

set EAN-8-Code | to [JTIEII

go to x: v: @
point in direction ELES

... | delete the old EAM-Code and go to the
starting position on the left halfway up ... i

-

... and work through my program. r

To do this we press the button "Make a variable" in the Variables palette of Snap!, enter
the variable name EAN-8-Code in the pop-up window and marke this variable as local
("for this sprite only"). Since it is not used in any other object, we limit its validity to the
scripts of the laser. The variable appears in the variable palette. Because we are already
there, we also create three other variables with the names edges, line widths and encod-
ing. The check mark in front of the EAN-8 code variable means that the variable is displayed
in the output window. There we can change their appearance in the context menu (right
click on the variable). The first block under the variable name set <variable> to <value>
is dragged into the script area. Using the small black arrow, we can select a variable iden-
tifier visible to the laser and enter a value for it. If we click on the block, it is executed, and
the variable gets the desired value, which is immediately visible in the output area.

After these preparations we must start to solve the real problem. One thing we have to
teach the laser in any case: finding the next black line. We switch to the costumes area and
draw a small red dot as a new costume - the laser dot. Alternatively, we can create the
costume in a graphics program, save it as a png file and drag it to the Costumes area.
With the help of the touching <color> block from the Sensing palette, we can now check
whether our laser sprite touches the specified color. This color can be selected from the
Snap! window or from the color box that opens after clicking on the color field in the block.
We use this block and a second one, which determines whether the edge of the working
area has been reached, as a termination condition for a loop (from the Control palette) in
which the laser sprite is moved one step to the right at a time.

blocks of the Variab-
les palette

Delete a variable

Fi Q EAN-8-Code
M9 edges

M (Q encoding
M 9 line widths

[set [t

change | by &
| show variable |
(hide variable |

| script variables @

linherit |

[EAN-8-Code|

« for this sprite only

i for all sprites

i} Cancel |

o normal
large
o slider
slider min._..
slider max...
import...
export...

rasnder
strichbreiten
codierung
EAN-8-Code

9 Image Recognition 79

When testing this block, we find that
the laser sometimes does not move at

repeat until - © touching ? _or touching edge ?

move §JP steps

all. During repeated overflowing of the
strokes it will happen that the laser touches a white strip on one side, 20 s ey
but on the other side it will still touch a black strip. After all, it has an = =g

extension, albeit a small one. We are therefore making sure that it

ntil/ - touchi 3 hi 2
advances to the point where it no longer affects black areas. Then he - = S, tovcng oo

l;‘]ove steps
runs off. &

After thoroughly testing this script, we pack it into a separate method, a new block called
go to the next black pixel, which is labeled as local because no one else needs it. (How
this happens is described in 2.7.1.) After that we create a very similar method, go to the
next white pixel. The comment blocks can be found in the context menu after right-click-
ing on the script area.

|9 go to the next black pixel ' go to the next white pixel

repeat until' not touching ? v repeat unfil ' not < touching [Jj ? v

if necessary, leave last color & If necessary, leave the last color P

move () steps move (@ steps

repeat until’ - touching |? or touching edge ? v repeat until ' < touching] ? or touching edge ? v
Continue to black or at edge Continue to white
 move) steps move) steps or edge
We test the interaction of these two methods in detail. = &g
Afterwards, we make sure that the value of the variable [ipmssg = -
edges is an empty list (Set <edges> to <list>) and that | | | geesresspemampy | delete oid values
the x-position of the laser is added to this list (add <x- || Frrares ey -
position> to <edges>). We delete the last two values of | easmatial search for the next border aitemately
this list, b th ted wh hing the | AP
is list, because they are generated when reaching the e S
border. We can observe the behavior of this script if we
. . - . . delete @5 of
mark edges with a small tick as visible. Since everything o of (odges M
delete 5K of (edges Delete the last two values
works well, the script will be packed in a new block to de- because they originate from the
edge of the screen y

fine the margins.
|@ determine line widths

Now there are three very similar methods, each of which

set linewidths | to list

runs through the last list just created to determine the
repeat until length of edges =[]

next values. We process the first values of the lists and

add | item @F) of (edges — item @) of (edges to (line widths
'delete @ of edges

then delete them until we are through.

7~

9.1 A Barcode Scanner 80

First of all, we calculate the widths of the
scanned lines as differences in the values of
the edges list and save them in the line
widths list. We then determine the encoding -

displayed by averaging the width "1" from item I of (line widths + determine width ™17

the first three line-widths and storing them D M= & « S

in the script variable width 1, which is only

script variables ' width 1

set encoding | to list

A

e delete & of line widths Delete start marker,-
known within the new block. We delete the ™

initial marking and calculate the first 16 line- = o ~

_— Determine coding
widths for the first four numbers. After that add | round nem € of (line widths VA width 1§ to | of the first four

1 numbers “
delete @ of line widths

we delete the middle mark and proceed ac-

-

delete GRS of (line widths) LG L d
"— marks

cordingly for the second four numbers. The

rest of the list is deleted. The determined val-
ues are stored in the encoding list. repeat & —

T e —— Determine coding
add | round (| item of (line widths /Al width 1 to | of the last four

numbers 4

[delete @D of (Tine widihs

delete of (Tine widths

Now all what is missing is the decoding of the blocks of the Operators

. . L alette
numerical values in the encoding list. We de- p

clare again a script variable code for the new

O] 2= & of na block. This is repeatedly composed of four

delete & of (encoding

numerical values (with the join block from
the Operators palette, which works with
strings). Depending on the value of the result,
we receive the next digit of the EAN code.

Our new blocks, which we can use like any
other command block on the laser-script
level, can be found at the bottom of the Var-
iables palette. The small marking needle in
front of the method names indicates that the
methods are local for sprite. In other sprites
they are not visible.

We create the barcodes with one of the gen- Core®)
erators for this on the internet and save them _________
t f ite, which o P —
as costumes of a new sprite, which we create
with the arrow button above the sprite area letter @ of [T
at the bottom-right of the window. We call (length of [
this Sprite Barcode. To switch between the ~ PFEEEEEEEER
costumes, we create a global block showing a (unicode (G as letter

barcode (to show this way of communication

<is i a number |2
< is [J] identical to [?

between objects). This doubles the size of the
costume and puts the sprite in the middle.

{JavaScript function (Jf =)

The block can be seen on all sprites.

9 Image Recognition

81

Our little project will be controlled by stage scripts. When the green flag is
clicked, the Barcode object is asked to display a new barcode - i.e. to change
the costume. This is done with tell <Barcode> to <show a barcode>.

Since the block to be executed is declared as global, surrounded in gray and so
marked as a code, we can simply drag it into the previously empty slot in the
tell block?>. Then the stage sends the message "begin" only to the laser object.
Alternatively, it could have sent this message to everyone. If only the Laser
sprite reacts, then this would have the same effect.

The last two scripts are used to initiate costume changes by pressing the space
bar and reading by clicking on the stage.

25 Another way to call methods of an object is described in 2.7.3.

|

clear

I'IEKt costume

go to x: f v: P
set size to @I %

broadeast list [T

9.2 Project: Transit prohibited! 82

9.2 Project: Transit prohibited!

Contents:

e export and import of sprites
e access to pixels

e using a library

e simple algorithmic structures

Modern cars have a camera that enables them to "see" and recognize traffic signs. We
want to try something like that. We search for the pictures of some common traffic signs
and scale them all to the size of 100 x 100 pixels with the help of a graphics program. After
that we drag them into the Costumes area of a Snap! sprite that we call Traffic sign.

As you can see, the signs are quite different. Therefore, one task will be to recognize the
shape of the shield. We find round, rectangular and different triangular signs. Fortunately,
we already have a laser from the last project at our disposal, which we will modify for the
new task. To do this, we export the Laser sprite from the barcode project to an XML file
Laser.xml (right-click on the sprite, click "export..." from the context menu) and import
this file into the new project either using the file menu or by dragging it onto the Snap!
window. In the Variables palette of the laser we delete all variables except for edges,
then we delete the local methods except go to the next black pixel. We open it in the
block editor (right click on them), drag the blocks to the script level and delete this method
too.

How do we distinguish the shapes of the signs?

You can come up with very different methods for this. We'll try this: The horizontal bound-
aries of the signs are defined in three heights and then the vertical ones at three positions.
Then we'll look at the results.

First the left edges ... then the right ones ...

sel xValue |to
set yvalue |to [EE]
add to (edges

-gu to x: (xValue vy: (yValue
point in direction KD
l_l_:;u to front

repeat until §7TC ST TN B ‘

add (round y position | to (edges

go to x: xValue vy: yValue

point in direction
[_go to front

rc\innge yvalue | by EEED

add (round x position to (edges
l’:ha-ge yvalue | by EEED

... and correspondingly the upper and lower ones.

main road turns kel

pass on the right

9 Image Recognition

83

The four scripts are put together and packed in a method determine edges. For example,

we get the following results.

Laser raender

Laser raender

e Ranaor: |

1k} untere Rander: |8

2 s

15 20

S E
lengtn: 16

et g

Laser raender

fooee vanaer B

Laser raender

Laser raender

5) Jength: 16 7I
N

T inve rancer |

B owee rancer 8

14 -

i[2) untere Rander: ||
E-
S
o

p) tenomii6 7
.

[oot Y
e)

That looks quite good - except for the stop sign. Its edges are suspiciously similar to a round
sign; we have to come up with something else. Perhaps a 13th "cut" at a suitable place
(here: fourth, in the list: fifth)? For that we can omit the right edges, because the signs are

obviously symmetrical. If we do that, we get for the "round" candidates:

Laser raender

] 37
i} untere Rander: |8

N
ikl 49 |8

N
[Jenomiis 7|
-)

Laser raender

o eomz 7 jengtn: 13
A o= 4

Laser raender

[ove Rancer:

The 5th list entry contains the value for the height 19 - and thus a measurable difference.

9.2 Project: Transit prohibited! 84

For the evaluation of our results we write a block determine shape. This should be a re-
porter block that determines and returns a value - the shape.

e Forrectangular signs, the entries 2, 3 and 4 should be approximately the same.

of [item @B of (edges |- item @R of (edges

of [item EES of ‘edges)= item EES of (edges

set shape |to

else
e The values of the triangular signs increase or decrease.
{ item of (edges =3 item of (edges and
i — £

{ item of (edges =2 item XY of (edges

§ei = = e O Mtriangular-tip-top

¢ item @K of (edges = item of (edges
4 item EE of (edges 2 item B of (edges

set = 1 i triangulartip.down

e If we assume a round shape (the second and fourth entry should be abc¢ut the same
size), then it is the octagon of the stop sign, if the third and fifth entry are'about the

same size, the rhombus of the priority sign, if the second entry is quite small and oth-

erwise a round sign. And of course, errors can occur.

item @ of (edges — item P of (edges <K

¢ of (edges |- item ER9 of (edges |

set shape | to [EEFEIE]
else |

i
| abs |of item &K of (edges | [gD

set shape | to [[ELH
else

set shape | to [EIO0

else
set shape | to

Finally, a block comes to the script that returns the determined shape as a function
result.

repori shape

9 Image Recognition

85

So, we have already limited the number of pos-
sibilities quite a bit, and we see that - at least so
far - we are getting by with the results for the left
margin. We write a local method shape? of the
laser that determines the shape of the just pre-
sented traffic sign. In addition, the laser is sent
"into the heath" and hidden so that it does not
disturb any further. His work is done.

script variables | result

set resull | to[ask Laser |for (§ determine shape of Laser

g0 to x: v: @
hide

For the meanings of the signs, the colors on the edge and inside are important. To analyze

them, we use the library Pixels, which we find in File menu =2 Libraries. This will deliver

new blocks that we find below the Make a block button in the corresponding palettes.

For the final determination of the type of traffic sign we simply want to count the number

of different colored pixels in the sign. Maybe that's enough. We leave this work to a new

object called Color Counter. This requires at least a copy of the current costume of the

traffic sign. We kindly ask them for the required data, which we store in a local variable

sign. In a second variable named pixels we save a list of the three color values and the

transparency of the pixels of the received costume.

10000 entries.

In this list, the pixels outside of the actual tag have
the transparency 0, inside the value 255. The three
RGB values do not represent "pure" colors, but
mixed values, which are for example "predomi-
nantly" red. We change this with a method change
to pure colors, which sets the color values above
100 to 255, the other to 0. This takes quite a long
time with 10000 values, because the list is "re-
freshed" every time. For this reason, we pack the
operations into a warp block that does not update
the display until the end. The speed improvement
is extremely high.

[cmr counter sign q/c;)

Color counter pixels A
10000 A B Cc D
1173 237 28 36 255
1174 237 28 36 255
1175 237 26 34 255
1176 238 49 54 255
177 251 210 212 255
1178 253 253 253 255
1179 253 253 253 255
1180 253 253 253 255
1181 238 235 236 255
1182 138 137 137 255
1183 0 0 (1] 0 _J
L

Since it has the size 100 x 100, we get

[_9\ change to pure colors

repeat until- 'i > length of pixels

set aPiel |to item (i of (pixels
Ul item B of (aPixel > [[[]

replace item D of (aPixel with FE5
else

replace item) of (aPixel with [j

- J
U item @ of (aPixel > f[I]

replace item of (aPixel with H
else
replace item @ of (aPixel with [j
J

U item EBD of (aPixel > [

replace item EK of (aPixel with FE5
else

replace item of (aPixel with [J

replace item i of pixels with aPixel
change i | by &B

| current costume]

copy of »

9.2 Project: Transit prohibited! 86

Similarly, we let the "pure" colours count in the °
count colors
picture: We will introduce a separate script variable for [=in i
. . L. red green | blue black | white | yellow [cyan magenta i
each of them, which we will initially set to zero. |

Afterwards we look at all pixels of the sign that have a [
sel red |to [
sufficient transparency. For these, we analyze the RGB ||

set green | o [

values and increase the value of the correct variables. |- % 0

Finally, we'll return a list of the results in which we'll |Eak== =t

sel white | to [{

add the color names so that we don't get confused. 2ot yelow 1o []
sef cyan |t 0]
- ~ .sel magenta | to]
Color counter colors — T
8 1 B repeat until - ‘i > length of pixels
1 black 0 .
2 white 1544 sel aPixel |to item (i of (pixels
3 red 6296 L | item EED of (aPixel >
4 green 0 ———————————
5 blue 0 4 item K of (aPixel B and
& yellow 0 item of (aPixel |— g TLLE item of (aPixel = i
T cyan 0
8 magenta 0

] item @ of (aPixel =E3S and

item @E of (aPixel = CLEE Citem @D of (@Pixel = [

(" Color counter colors 0
g A B S
1 black 81 item @K of (aPixel | =FE3Y and
2 white 3052 item @&2 of (aPixel =[] LI jtem @K of (aPixel = AF
3 red 2534 .(..:.Ilnnge magenta | by)
4 green 0
5 blue 0
6 yellow 0
T cyan 0 of (aPixel |=
8 magenta 0

Y X =5 and

item @E) of (aPixel =] LI item @B of (@Pixel =[]
(" Color counter colors 0 by €
8 1 B
1 black 121 4 item @D of (aPixel S and
2 white 2249 ¢ item @ of (aPixel, |- B TP | item @& of (aPixel - [
3 red 0
4 green 0
5 blue 0 {item @B of (aPixel |= > and
E yellow 0 item of (aPixel =[] TLLE | item of (aPixel =
7 cyan
change bue | by &P
8 magenta else

c'hange black | by &

c.hnnge A 1]

t black
EE3] areen
EE ovan AR magenta

9 Image Recognition 87

For easy use of the methods we write a global method colors? which initiates the appro-
priate operations.

colors?

set pixels | to pixels in [sign

tell Color counter |to | § change to pure colors of Color-counter

=10 ask [Colorcounte

We leave the control of the objects to the stage. When pressing the space bar, the traffic
when space | key pressed

go to x: P v: &P

sign should change and when clicking the green flag, the analysis takes place. The Stage
object queries the results of the others and evaluates their data.

next costume

when clicked

5ét resui | to NEEEENELLD

set theShape | to [ask Laser |for

set theColors | to| ask Color counter | for (

9 evaluation

For the evaluation we use on the one hand the - R —

determined shape and on the other hand the

. o seript variables ('
counted color values. This can be done in a sim- -

ple way: e T T e rhombic

. set resull | o
The results are as desired. =

if © theShape — [EELNICS

sef resull | to halt

if - (theShape = [ENERTEE]
set h |to | item i item 1 ~Jof i -

B —_— —_— black pixels
if & = CES and € h £4

set resull | to

transit prohibited

(1l 1 el triangularstipsdown)

set h |fo/ item 1 iten A
white pixels y

set resull | to SIESHEN

etc.

9.3 Project: Face Recognition 88

9.3 Project: Face Recognition

Contents:
e accessing single pixels
e using JavaScript

e more complex algorithmic structures

Face recognition is a good topic to discuss the social consequences of IT systems. There-

fore, we want to use the capabilities of Snap! for this purpose. For good reasons, passport
photos are strongly standardized: the facial posture is prescribed, ears must be visible, ... Peter
This makes facial recognition considerably easier. We therefore draw four faces that
roughly correspond to these regulations. On these "photos" we apply the already known

(and some new) methods.

We're looking for the face, and that's (nearly) "pink". Since the facial colours are different,
we first carry out a reduction of the color space. We find suitable limits of the (here) three
intervals by trial and error.

The procedure is well known from
traffic sign recognition in the previ-

ous section - we use the Pixels li-
brary. The faces now appear very Paul
beautifully orange - regardless of
what they looked like before.
repeal until i > length of pixels

-

set thePixel |to item i of pixels

o

set n io

Mary

replace item EE of (thePixel with [J
replace item (i of (pixels with ‘thePixel
change i | by &P
-

else
@

Hannah

9 Image Recognition 89

If we delete all colors except orange, only faces should be left.

| “delete all but pink

e b
script variables | i thePixel q

‘;"E’"’ w
sef |
repeat until - i > length of pixels

set thePixel to item (i of [pixels

em X of (thePixel = 3

replace item (i of (pixels with

change i | by §B

So that we don't always change the original pictures with our procedure, we first make a
working copy of the current costume and delete it later on.

.\Ioolt for the face

script variables ' n

add (copy of (Zl=11¢ g8 fo (my costumes
set n | to! length of | my costumes

!';\Ni‘tl:h to costume (n

set pixels | to pixels in current costume
reduction of the color space

update (EI 0 1) with | pixels

switch to costum

delete all but pink

update (&=

switch to costum

In these faces we now have to identify the eyes, mouth, nose, etc. From the proportions
of the sizes eye distance to nose length, mouth width to face height, ... can be inferred on
the person.

How to find eyes?

They represent "holes" in the face, which must not be too large or too small. The right eye
(from the person's point of view) e. g. should be in the top-left of the passport photo. To
do this, we first need to be able to ac-
cess individual pixels in the image. We getRGB from (costume > at (x# (y#
do this by using the JavaScript-Block,
which we give the coordinates and the P S)L

var ctx = costume.contents.getContext('2d'};

considered costume as parameters.?®
data = ctx.getImagelata(x,y,1,1);

We select the type of parameters as
. .) return new List({mew Array(data.data[@], data.data[l], data.data[2]));
described in 2.7.1: twice a number and e

once an object.

26 There are other ways to do it.

9.3 Project: Face Recognition

90

We use it to search the upper-left image area
for a "hole". We analyze the area of 44 < x < 86,
89<y<121.

sef y

to Bl

set found |te < @ false

repeat until - (found or { vy = [EY

set x | to I
(011255

repeat until |

by &9

sel value

change y

We pass the white area and stop at the first
orange pixel:

repeat until | { value LK or € x =15

set value |to item @) of (getRGB from current costume at (X (¥

by €9

change x

Then we look for white.

repeat until © { value EoEENS or x =0

sei value [fo| item @) of (getRGB from current costume af (x [y

by &

change x

Was that
Otherwise it won't work with

really white? [Pl

if * (value > EEY

if © not found

We now count the white pixels horizontally in
the variablen ...

setn [to

set xp I x

_rv.el yp to (7

set value tol item @E) of (getRGB from current costume at xp yp

change xp

set vaue | to item @ of (gelRGB from current costume at xp yp

change n
J

If the gap was in the correct range (5<n<30), we
do the same thing horizontally.

if ¢ n [5" ore

P faise

L= |30
set found | to

else

n /&

set xp

to round| x |-

set vaue |to item @R of (getRGB from current costume at xp | yp

If the size fits here too, it was an "eye".

look for the

right eye

_f;cript variables

x Iy found | value [xpos | ypos | xp

yp

set resull | to < () false
1o N
set found | to

9 raise

repeal until © found or{ v I [FL

sef y

set x to[H

set value to EEJ

STy ot 2

- from left to right on the same hiyﬂA
repeat until = € value | = jK[] -

. looking for pink
set value |to item @ of (getRGB from current costume at ' x |y

change x by &I
repeat until © ¢ value —|P] or € x |-] -

looking for white

set value | to item @ of (getRGB from current costume at ' x |y

change x by @@

set xpos | to (3 -
if’ (value > FL] save x-position .

set n tof] -

count white pixels

set xp &
i o the ight y

set yp | to %

set value |to item @R of (getRGB from current costume at xp | yp

JiED
change xp by &P
set value

to | item @K of (getRGB from current costume at xp | yp

change n | by P

if & i gy or{ m -2 -
no candidate for an eye
set found |to <) false

else

n /& "
search in the
middle. A

set xp | to| round [x

set value |tol item @K of (getRGB from current costume at xXp | yp

repeat until - < v : 57
A search lower edge
change yo_| by €9

sei value |to item @I of | geiRGB from current costume al xp | yp

§et n tof -
change yp | by G

set ypos |to €7

count vertical white pixels

set value |tol item @K of (getRGB from current costume at xXp | yp

value < [EJ]
change yo | by G

set value

répeal until

to item @ of (getRGB from current costume at ‘xp | yp
by &

change n

if - < n L35 or¢

set found | to < @ faise
else

set found to < true @
set yp to round | ypos | =

set resull to list xp (yp

if © not found

set x | tof

by &9

change x

9 Image Recognition 91

The procedure is not very simple, but it is still feasible - above
look for the nose | xstart # ystart #

all since we can develop it step by step, because the interme-

script variables | x [y value [result

diate results are easily to show.

set resull | To < () false

For the left eye we search the upper right area very similarly, (e

set Li= O ystart

and the mouth should be in the lower half of the picture and e -
be larger than an eye. repeat uniil | value <

set value | fo | item @D of [getRGB from current costume |at ‘x |y

With the nose we make it very easy for ourselves: it startsin
change y | by &

the middle between the eyes and runs to the first white pixel = = = s
o repeat until < (value > PEi]
- whatever that is. :

set value | to| item @S of [gelRGB from current costume af ‘x (¥
change y by &

sef resull | o list (xstart (ystari

To check our results, we write a method draw line, which draws a line between two points
in the image - again as a JavaScript function. We transfer the coordinates of the endpoints,
the RGB-values of the desired color and the line thickness, as well as the edited costume.

. draw line from

q# b #

)4

ctx = costume.contents.getContext('2d");
.beginPath();

.lineWidth = width;

.strokeStyle = new Color(r,g,b).toString();

-moveTo(xa,ya);
.lineTo(xe,ye);

.closePath();

.stroke();
withinputs xa ya xe ye r g b costume width

This allows us to easily draw small crosses into the picture:

: mark | point :

draw line from | item @K of (point — &P | item @ of (point |io
item @I of (poit + @@ | item @& of (point | color B € € on

current costume width &

draw line from ' item K of (point item @ of (point — &P to
item I of (point item @ of (point |+ &P color £P &P on

current costume | width &)

switch to costume (510115

Don't drink too much coffee while you wait for the results!

9.3 Project: Face Recognition

rightEye

1IER
3 s5 J8

2

Bngin: £ -

[100 8
[85 |8

engthi 2 -

1
J

+

length: 4 .~

We calculate some ratios from the determined values and save
them together with the names in a list allAttributes. By
comparison with the currently determined values, the searched
person can easily be identified.

; identification

script variables i]
1240.05
to - . false

to 4

set delta
set found
-;.P_t i
found or ¢

Browse all stored records. repeat until

to item i

true @

Test the current record for consistency. || == ELLTIE
to

to 7

set test
set n

Compare all properties.
| i

{ item ‘n of (newAttributes

{ item (n of ‘newAttributes

set test |to< () raise

Note failure.

éhange n by &

Person was found, show name.

seil found to

true @

set person

Otherwise, keep looking.

3 A B c D

1 MName Mouth : Nose MNose : Eye Mouth : Eve

2 Mary 1.075 0.9756 1.04878

3 Hannah 1.2368 0.77551 0.95918

4 Peter 1111111 09 1

5 Paul 0.65789 0.926829 0609756
P ——

2

attributes | found ' delta

i =0 length of (allAttributes

of (allAtiributes

item 'n of attributes - delta

.‘

item n of attributes + delta

>

to item K of attributes

9 Image Recognition

93

The whole problem can be solved by combining the sub-problems. We assume that the

image of the person to be identified is on the screen. This is copied, transformed and the

changes are displayed. Then the original image is repainted.

face recognition
set turbo mode to < true @

set costumeNr | to costume #

set person | to FOIOCTS
look for the face

_r:et lefiEye to look for the left eye

l;larlt leftEye

!':et rightEye to | look for the right eye

ﬁlarlt rightEye

s:et mouth to | look for the mouth

(;mw line from item &K of ‘mouth | item €K of mouth to

item P of (mouth | item XD of (mouth | color L &P on

current costume width P

!;et nose | to
look for the nose

round | item @ of (leftEye + item B of (rightEye | |/
round | item of (leftEye + item @) of (rightEye [r2)

draw line from item @ of ‘nose item @) of (nose to

item EK) of ‘nose item I of (nose |color) EXP P on
current costume | width

swiitch to costume (=[] -

set mouthTOnose | to

| 5 407 item &P of ‘mouth — item @ of (mouth
| Ui item @) of (mose — item I of (nose

sét noseTOeyes o

|' Uil item @E of (mose | — item K of (nose /
item @K of lefitye — item @B of rightEye

!:et mouthTOeyes |to

(751 item € of (mouth |— item K5 of (mouth

' lefttye — item @) of (rightEye

Qet newAitributes | to

list JIIGENG] - mouthTOnose noseTOeyes | mouthTOeyes

identification

delete of | my costumes

switch to costume | costumeNr

The four people are safely
identified.

length: 4~

length: 4 -

9.3

Project: Face Recognition 94

9.4

Tasks

: Find out about the calculation of the check digit in the EAN-8 code. Use a few ex-

amples to test whether you have understood the procedure.

Let the barcode scanner check after each reading process whether the check digit
has the correct value.

Extend the barcode scanner by further options: Codes can also be read "back-
wards", and there are also longer codes, e. g. EAN-13.

: Get the manufacturer's and product numbers from the barcodes you have read. En-

ter the results in plain text on the basis of the corresponding data: "Honey from the
bee-farm", ...

Develop a barcode generator. It is given a sequence of numbers and calculates the
check digit from this and prints the barcode. This can be done, for example, with the
help of appropriate costumes, which are printed on the stage in the right places
using the stamp block from the Pen palette.

Have foreign road signs identified. Use the traffic signs to determine where a photo
was taken.

A speed warning device is used in a car to determine whether the speed limit has
been exceeded by means of traffic signs.

Intelligent scales (smart scales) contain a camera to detect fruits. Start with fruits
you have drawn and then move on to real photos.

German car license plates contain a character set that is very suitable for image
recognition (uniform character width, ...). Develop a procedure that recognizes ve-
hicle license plates. Discuss the consequences.

Face recognition can be found today when you log on to a computer system, in
cameras and smartphones, in social networks, ... Find out more about other appli-
cations and discuss the results.

In some countries, a system of social credits is being introduced or the introduction
is discussed. Find out more about the system and discuss the consequences of ex-
tensive video surveillance.

10 Sounds 95

10 Sounds?’

Contents:
e playing and recording sound
e visualization of sounds

® music

Similar to animated graphics, it is a bit difficult to describe how sounds are handled. There-
fore, only the different possibilities are presented here - with the urgent recommendation

to try out and experiment with the "code snippets".

10.1 Find Sounds

First of all, you need a sound in WAV format. To do this, you can either import the file
using the File menu (File 2 Sounds...) ...

.... or, as usual, drag it "from outside" into the Snap! window ...

Import | Cancel
VA

... or just record it yourself. This can be done - for short recordings - directly using the
Snap! sound recorder on the Sounds page. For longer recordings you should use one of

the common tools.

For further editing we load the library Au-
dio Comp from the File menu. This means
that the adjoining blocks from the Sound, — T T—
Pen and Sensing menus are available to OOl =————

Save | Cancel
us.

Below we work with the file
soundtest.wav, which we have created in
one of the described ways.

(duration | of D>
| play B at QG Hz
| CEIRS Hz for) secs at EZIIE) Hz sample rate

[sound named [}
| stage width
 stage height

[plot >

27 Following the example "music" by Jens Ménig

10.2 Processing Sounds 96

10.2 Processing Sounds

If there is a sound on the Sounds page, it will be displayed in the corresponding blocks. JFF =
The easiest way to try this is to use the blocks for playing sounds.

[play sound soundtest | until done

For further processing we need a representative of our sound. The block sound named P —

<soundname> is meant for this purpose. If you edit this, you have found a small example

of how to use the sound blocks. sound mamed

—_— (Z of sound named
play ' sound named at EEITR Hz

The of block for sounds provides access to other sound properties. In particular, its sam- e

. length
ples? can be determined as a list. These are needed if you want to actively edit a sound. pumber of chanet
samples

For example, we can influence the playback speed of the sound by changing the sample

rate. The Hz for... block generates samples with the specified properties, e. g."pure tones".

2 A B Cc D E F
1 0.00143436¢0.00122074(0.00085451{0.00082399¢0.0011291840.00128"
20 ONAATAIRIN A0 2257 K0 0008545 1460.00082385L0.0011281840.00128

| samples | of ' sound named |[TIEH]

IS Hz for) secs at EIIEs Hz sample rate

plot (sound named

The visualization of the sounds is interesting. With the plot <sound> - block we get a
graphic of the sample on stage. %

28 https://de.wikipedia.org/wiki/Abtastrate
29 The same applies to (almost) all other sound blocks. If you edit them, you will find examples of Java-Script for
example.

10 Sounds 97

10.3 Making Music

A sample consists of a list of numbers and stereo sounds from a two-element list of samples
(see above). As a result, sounds can be manipulated with the usual list operations, such as
inverting, changing the value, ...

Songs can also be composed of notes, even very comfortable. The play note UK for QX beats
note is selected on a piano keyboard. This can quickly be used to C (60)

compose songs ...

hadbiidiidliad

~

Fuchs, Du hast die Gans gestohlen

ﬁlav note K for P beats
T ren ¢ Lo5R0s S .. and to play it on different
'f'“ note g2 for LEP beats instruments and in different tempi.
play note & for P beats
ﬁlav note RS for EP beats
ﬁlav note @ for P beats
|;lay note EEE for EP beats
play note 0 for P beais
|;Iav note G for LEP beats
ﬁlay note for EP beais
ﬁlav note {{E for {EP beais
|;lav note S for P beats
play note g for P beats

If you play several notes in parallel, chords are | jaunch (57 IR o IR TR

created ...
play chord ' all but first of ' data for (beats beats

play chord ' list [69 for &P beats

... and these songs can be played and varied ...

set instrument to
set tempo to bpm
ﬁul:hs, Du hast die Gans gestohlen

play chord | data ! for | beats # = 0.5 beats

if ' length of (data =[]

play note item @) of (data for beats beats

il length of (Song | > [i]
... using a suitable list of pairs of (note, duration).

play chord | item & of (- K i song | for
Ui song beats

item @ of (1= K Ui song || beats
|

rest for | item @ of

play song ' all but first of song

10.3 Making Music

98

set two basic chords

describe bass accompaniment and song by
lists of tone / duration pairs

make a few adjustments

to play the song,
the chord

and have a short break

and now play the song and bass accompani-
ment over and over again with variations

both play in parallel because of the launch
block

when clicked

script variables maj min song | bass | delta

set mai |to fist 5 & @ G @
to |i‘.lﬁmwmmm

sel bass |to

set min

50T
ist 55 [
ist [[T

54 [T
list [57 [T
ist [55 7

d
st [53 [
ist [57 [1

maj

| i« map | @ + &P

over

over (maj A

over ' maj

| i+ map | @ — &

(ET mai |H
® O
set turbo mode to v

set tempo to &P bpm
set instrument to

over (min ||f}

play song song

play chord ‘maj for) beats
rest for) beats

forever
;él delta

to | pick random (GFJP to gP
set instrument to | pick random &) to €P

Ll item @ERS of (L5 tue @@ @ ralse
launch

set instrument to | pick random & to P

play song | song bass transposed by [delta mod G2 |- €29

play song song' song transposed by delta

2

10 Sounds

99

10.4 Project: Hearing Check

A hearing check tests the hearing ability at
different frequencies, but also at different
volume levels. In a simple case we play tones
of increasing frequency until the respondent
hears something. Then he (or she) presses
the space bar. This frequency min is noted.
After that, the frequency is increased until
nothing more is heard. This frequency is also
stored.

Make sure that the volume is not too high!

when clicked
to il

set max |to [}

set frequency | to i

repeat until key space

set min

pressed?

Snap! Build Your Own Bl X

€ C | ® Nicht sicher

touching
touching 7

color_ is touching |7

Pt s your name:

turbo mode?
set turbo mode to

A Snap! Build Your Gwn Bl %

snap berksley.edu/snapsource/snap.htmi#

4 Hortest

when | clicked|

set mn 1o

set max (1ol

set frequenz | to flf

R - | peoi?

(0 () He for 71 secs at 20050 ~ Hz sample rate FUROT0ET S
wait 7 sacs

change fequen: | by LD

(oin ETH))

B) Mzfor " secsat /73050 - Hz sample rate RK 1200 <)]

wait /7 secs
change wequenz | by LI

e e

wait 71 secs
change frequency | by @D
to(frequency — &P
wait &P secs

repeat until key space

sel min

pressed?

|phv) Hz for (1 | secs at (22050 ~ Hz sample rate E¥ 52050 <4172

|phy LT) Hz for (1 | secs at /27050 ~ Hz sample rate B 322050 ~§ .

wait 7 secs
| change frequency | by LD

set max |to(frequency — &P

10.5 Tasks 100

10.5 Tasks:

1. Define test conditions that lead to comparable results.

2. Change not only the frequency, but also the _
volume. Since our sounds are described by |sata ittt COl
samples, the volume can be changed by simply == kR0 Hz for) secs at Hz sample rate
multiplying the sample values. For example, in

x QX | over (@

the following script the volume is increased un-
til the space bar is pressed. Attention: The vol-

repeat until . key space pressed?
ume should not be too loud!

play (b at @ZETES Hz

’_5\el b |to map (@ % 12 over (B

3. Measure the cut-off frequencies and the volume per frequency required for lis-
tening. Create a diagram based on the data.

MAKE SURE THAT THE SOUNDS ARE NOT TOO LOUD!

if you hear something, press <space>
lower frequency limit: 80 upper frequency limit: 4500

T actual frequency: so [P

4. Make an excursion to an ENT practice/clinic. Present your diagrams and let your-
self be explained if and what you can read from them. Find out about the causes
of possible hearing loss.

11 Project: Electrons in Fields 101

11 Project: Electrons in Fields

We want to use the knowledge we have gained so far to realize a small project in the field
of - well - physics: Electrons move in a tube with a capacitor built into it. This tube is placed
inside a pair of Helmholtz coils so that the electrical and magnetic fields are perpendicular
to each other. Both are reasonably homogeneous. This is one of the standard high school
experiments. All components can be developed independently of each other in different
groups and in very different ways. Only physics stays the same. That's the way it is with

physics.

‘LElectmn source Ub [0 | Magnet Coils | [0 |
==) l = /

(Capacitor U [JE0) |

Bectron Electron: Capacitn MagnetC E-Field B-Field

11.1 Electron Source and Set-Up

Since this is a standard experiment, the required devices should be found in the physics
collection. It is therefore a good idea to construct the experiment in a clearly arranged way,
photograph it and extract the partial devices from the images in such a way that they can
be used in the project. Here in the script only simple drawings were made instead. We
need images of the capacitor, the coils, the electron source and - for illustration - the ge-
nerated fields.

First of all, we enlarge the stage from Snap! to 800 x 600 pixels. There is a menu item in
the Settings menu of Snap!. Then we draw a simple picture of an electron source and
import it as a costume of the current sprite.

102

11.1 Electron Source and Set-Up

After starting the program with the green flag, our electron source is sent to its place in
the correct costume. If necessary, we can also move them to another place in the experi-
ment. The device has only one characteristic feature: the momentary acceleration voltage
of the emitted electrons. To do this, a local variable Ub is created and displayed on the
stage. In the context menu of this display (the monitor) you can select slider and set the
minimum and maximum value. With the slider, the variable value is changed between
these values in the running program. We choose a range between 0 and 250 volts.

11.2 Capacitor and Electric Field

The capacitor in the tube has a plate spacing d, which we set fixedly so that a realistic
electron movement results later on. Once it has found its place, it runs continuously until
the program terminates. If we set the applied voltage U to zero, it should disappear so that
we can examine movements only in the magnetic field - it would only disturb. For U and d
we set up local variables. The capacitor informs the electric field E-Field about its current
value. This is done by setting the value of its local variable E with the value U/d in the
context of the E-field.

In fact, the following applies:
U
E=—
d

tell EField [0 | set

After that it sets the ghost-
effect of the electrical field,
i.e. its transparency, to a
value that depends on the
applied voltage in the same =

way. The smaller it is, the without applied voltage

the capacitor disappears
more translucent appear the “
arrows that symbolize the

electric field.

Ft\eI_IEF to| 5|ID'|N|
frp— e w8

e

tﬂl| with inputs £ [

Language...
Zoom blocks...
Stage size...

it electrons in fields

O Input sliders
O Turbo mode
O Visible stepping

O Long form input dialog
O Plain prototype labels
O Clicking sound

O Flat design

O Thread safe scripis
O Flat line ends

O Codification support
= Inheritance support

5..wit|:h to costume electron-source
set size to g %
g0 0 x: v: @

= normal
o large
e slider
slider min._..
slider max.

import. .
export. .

@

Important: the field
of the value in set
<variable> to

<value> must be re-

ally empty so that it
can be replaced by
the specified size!

v

calculate current electric

tell N cet ghost | effect to |
with inputs [/ 100 =

visualize elecfric

ik field strength

field strength

A

11 Project: Electrons in Fields 103

The electric field, another sprite of its own, simply consists of [es

a costume containing a series of parallel arrows that fit

is set by the capacitor as described. The voltage of the
capacitor is displayed as a slider variable on the stage.

Magnet Coils | “

between the capacitor plates. It has a local variable E, which _

Capacitor U (I3

11.3 Helmbholtz-Coils and Magnetic Field

The Helmbholtz coil pair is symbolized by a simple circle on the stage.?° It contains a local
variable B, the magnetic flux density that results for commercial devices to

T
B =0.008—-1 where | is the electrical current through the coils. We show them as a

slider variable between 0 and 10 (ampere). That's pretty strong. Like the capacitor, the
coils communicate to the magnetic field about the value and transparency. Like the electric
field, the magnetic field consists of only one picture.

-

without current, the coil pair
disappears p

hide
g o (LD

show

o o G

tell EField |to I""|_5‘et to |

with inputs | X[x (T v
calculate

% current
tell EField (fo| set ghost | effect to @ - magnetic flux

L —ee—— visualizing the density
with inputs @D — (&7 T | <

magnetic field -

30 You can really make it much more beautiful!

11.3 Helmholtz-Coils and the Magnetic Field 104

If we switch off the electrical field and look only at the elec- |/ eesesoucew g
tron path in the magnetic field, we get an almost circular path, S
but not a closed one. The spiral results by calculation inaccu-
racies, because the calculated changes are much too big.
We'd have to calculate in much smaller steps. So, we still have

to work on that!

Magnet Coils 1 ‘

Capacitor U § ‘

L =

11.4 The Electrons

Now comes the bitter moment where we can no longer avoid physics. Be that as it may.

Two forces act on an electron in the arrangement: the electric and the magnetic. With the
electric, it's pretty simple. It’s upwards here because the electron has a negative charge:
F,=¢€E

The Lorenz force FL =(Q-Vx Bis perpendicular to the current velocity of the electron and
the field direction. So, we have to work with vectors. The magnetic field has only one com-
ponent in the z-direction, i.e. "into the screen", the speed only two components in the x-
and y-direction "on the screen".

v, 0 v,-B
Therefore, the following applies: F =e- v, |x 0|=e|-v,-B
0 B 0
—_— Vy . B —
Summarized: Fgesamt =e:|E-v,-B| ,andthereis: F=m-a
0
we obtain for the accelerations in both directions:
e e
a,=—-Vv,-B und a =—-(E-v,-B)
m m

with the signs corresponding to the coordinates of Snap!. These accelerations change the
velocity components and these in turn change the position of the electron. That's it.

We can transfer these results directly into the electron's script. We adapt the constant e/m
a little bit, because "real" electrons are significantly faster than our screen representatives.
No other adjustments are required. The electron therefore only needs the "too large" local
variables e/m and the acceleration and velocity components. In order to better follow the
track, it is drawn on the stage.

11 Project: Electrons in Fields 105

set eim |to [EGE -

_r:wit[:h to costume electron here the correct value of 1.76x10°11 C/kg has been
changed in favour of a speed that can be displayed. 7

go to x: Im + | x-position | of Electron-source
y-position | of Electron-source

-

wait for it to start. &

-
accelerate electrons with Ub A
repeat until -
touching edge |2 LIX touching |2 3 or key space | pressed? fly to the edge or to the capacitor
. plates s
w

the electrical and magnetical forces
act within the arrangement &

go to x: [x position + wx | y: [y position |+ /vy

. .
go to x: | m + | xposition | of Eleciron-source 4 v

y-position | of Eleciron-source Eaciiofielioe 5~

You can now observe the sometimes amazing movements of the particles. Of course, it has
to be asked what is true and what can be attributed to numerical effects. Projects never
end, they give impulses to further questions!

Magnet Coils | n

12.1 Operations on Strings 106

12 Texts and Related Topics

12.1 Operations on Strings

Contents:

1. use of the built-in string blocks

2. development of new string features
3. creating your own library

Like its predecessors, Snap! contains a set of methods, reduced to the essentials, that
work with strings. This includes

e join <stringl> <string2> : the concatenation operator for concatenating several
strings. The result is a new string. The operator can be
extended with additional arguments using the arrow

keys.

o split <string> by <char> : the operator for splitting a string into a list. The sepa-
rations are made at the specified character, typically
the blanks.

e letter <n> of <string>: returns the nth character of a string.

¢ length of <string> : returns the length of a string. (Not to be confused

with length of <list>!)
e unicode of <char>: returns the unicode of a character.
e unicode <n> as letter : returns the nth Unicode character.

Other string operations can be found in the libraries Tools and Words, Sentences. They
can be imported from the File menu. The new blocks are located below the Make a block
button in the Operators palette. We want to go a different way here by building up some
helpful methods from the basic operations. First, we want to write a method rest of <text>
from <index> which returns the rest of a string from a certain index. So, we create a new
block, which we assign to the operator palette this time, so that it looks nice green like the
string operators. Since this is a function, we click on "Reporter" and because of course oth-
ers should also benefit from our work, let's leave it at "for all sprites". As already described
several times, we can insert the parameters at the +-characters between the words of the

method header. We typify them as text or number and specify the default value 1 for the

(join
=T [T llhelio-world

(length of

o for all sprites

E3

_ for this sprite only

Cancel '

parameter index. Both are displayed in the method header as index # = 1.

© @ rumoer

o B o
—
Q » (C-shape)

0K Appl Cancel
3 SR T y

OK J Cancel)

12 Texts and Related Topics 107

In the script we copy all characters of the text beginning
with the index into a string variable result. This is returned
as function result using the report block. To make things

nice and fast, we'll pack it into a warp block.
set resuii | to i

rest of (text from (index # =1

script variables | i result

if f

set resull | to| join (result

change i

Similarly, the function beginning of <text> to <index>

returns a string.

beginning of (text to (index # =2

script variables | i result

sef resull | to | |

set i |tof

[—

repeat until * € i | index or{ i | length of "text
set result | to | join (result

éhange i | by &P

?e result

Both functions make it easy to get a section of a string.
part of (text from (start# =1 to (end # =2

report rest of (LG text B0 end | from (start

And the position of a substring in another string can also be
determined - nicely recursively. If it does not exist, O is re-

index of part in [fext

séripi variables | pos
turned. .

12.1 Operations on Strings

This makes it easy to implement standard operations such
as replacement in strings.

vegining of () (L9) |

set text | to| joi

ot ot 2 om (L o)

To make mankind happy with these new possibilities, we export the created
blocks to a library. To do this, we select Export blocks... in the File menu and
then select the blocks to be exported - all of course! We receive a file string
operation-blocks. xml, which we save in a suitable place. If necessary, we can
load the blocks into other projects via the file menu.

Export blocks

<

<<

(part of il from gP to &
(rest of il from g

(beginning of il to €
Cindex of I in N

 replace all] with Il in |

i’ Cancel |

12 Texts and Related Topics 109

12.2 Vigenére Encryption

Contents:

e using the Tools library

e higher order functions

e additional control structures

Vigenére encryption is an extension of Caesar encryption, in which each character of plain
text is shifted by a number in unicode resulting from a key character. Usually the key is
shorter than the text to be encrypted, so you simply extend the key until it is at least as
long as the plain text.

Beispiel: plain text: THISISASECRETTEXT
key: NOKEY
extended key: NOKEYNOKEYNOKEY

Thus, the first character of the plain text (T) is shifted by 14 characters (N is the 14th char-
acter), the second character (H) is shifted by 15, the third character (1) is shifted by 11, and
so on. If you get characters larger than Z, the characters are moved cyclically starting at A
- as is usual with Caesar encryption.

We write a little script that specifies the key and the
plain text and lets a function determine the ciphertext. == {E0= o

L =T R B 1l This<textis-to-be-encoded-incredibly-cleverly.
set ciphertext | to |enc|'v|ll (plain text with key

So only the encryption method is of interest.

Since we work with the character codes, we need two blocks from the Operators palette.:
unicode of <char> und unicode <code> as letter.

First of all, we want to be able to convert codes from lowercase (97 .. 122) to up-
percase codes if necessary. Afterwards, we generate a list of character codes from cade { st

the plain text, named textcodes. Creating a list from a string is easy when loading (o >[96 ﬂo <[123 ’J
the Tools library.3! There we find the operation word = list <string>. Over this rreport J
list we "map" a function that calculates a new list from the individual characters ===

of the list. We pass the CODE of this function to the map <function code> over [_re"m o

<list> - block, which can be recognized by the grey ring around the function block.
This means that the function is not executed first, as usual, and then the result is
transferred, but the program code of this function is passed to be executed in the
map-over-block.

In this case, the "mapped" function consists of first
determining the unicode of a character and then sending it
through the code in capitals function.

We get the result we are looking for:

31 see Harvey, B. and Ménig, J.; Snap! 4.1 Reference Manual, http://snap.berkeley.edu/snap-
source/help/SnapManual.pdf. You can find it by clicking on the Snap! icon in the top-left cor-
ner of the Snap! window.

11.2 Vigenére Encryption

110

We save the code-lists of plaintext and keys in the variables textcodes and keycodes.

Next, we extend the keycode list by the
codes of the key until the list is at least as
long as the textcode list. As help we use a
variable help and a new control structure
called for each <item> of <liste> from
the Tools library.

Now all we have to do is apply the Vigen-
ére procedure, in this case only to the let-
ters. Instead of mapping a function, this
time we use the For loop from the Tools
library:

for < counter> = <start> to <end>.

We use it to scroll through all characters
in the textcode list and encrypt them as
indicated. Note that there are two ver-

The process as a whole:

with [key

encrypt | text

script variables | i texicodes | keycodes | result

set texicodes | to

unicode of Jj RN
to
unicode of Jj FUE=T U2
:':él help | to
repeat until . not { length of (keycodes

for each [item of (help

item | keycodes

sél result

to i
length of (textcodes

set help | to |" item(i of (texicodes

repeat until - help < Ef]
by

c.hange help

set help to unicode help as letter

else

sei help | to| unicode item (i of (texitcodes

repeat unfil | not (length of | keycodes

sef resull | to [join/ result help

sions of the length of blocks: one for strings and one for lists.

over | word = list | text

of (textcodes

= item (i of (keycodes

item iy keycodes

of (textcodes

set help |to |' item (i of (textcodes |5 jtem (i of (keycodes
repeat until- “help <]
c‘Imn!m help | by &L
set help | to(unicode (help as letier
else
of (texicodes | as letier

set help | to| unicode ' item (1

help

hd

twice the mapping function

over | word = list (key

.= length of | textcodes

-

FOR..EACH

<81

v

encrypt capital letters only o

as letter

sel result

to [join result help

2 length of (textcodes

e

-

encrypt capital letters only

FOR..EACH

e

12 Texts and Related Topics 111

.
32
12.3 DNA-Sequencing
T AN TAGCTAT T TAATGAGCCAATAAC TCTGGCTAMMTATCTGGCGTCTCGGC CTOTAGTTGAGTGTAAAAACSS

Contents:
e using your own string li- i Y ("connections)
C . 3T1GGG 3 17 A B
brary 1 16 10
2 1 [
e working with strings = :
and lists s v :
6 2 7
. 7 8 10
e working top-down o ;
9 7 9
10 13 8
. . . " 3 9
In bioinformatics, subse- I s
13 17 3
quences are extracted u 1 s

6
9
14

3

from a broth of biomole- DNA-HELIX
(FROM HTTPS://DE.
WIKIPEDIA.ORG/WIKI/DESO

XYRIBONUKLEINSAURE)

w @

cules containing fragments
of DNA strands. The entire
DNA strand is reassembled from these. Here we use a very simplified model, in which the

sections are represented by strings consisting of the characters A, C, G and T. The frag-
ments "overlap" partially, so that the original DNA can be reconstructed from matches at
the chain ends.

First of all, we need DNA. Sequences can be found on the Internet. However, since the
meaning of the sequence is not important here, we simply create it randomly.

The product of this method, a long character string, we now have to "break", i.e. divide it
into pieces of different lengths, which partly overlap each other. We accomplish this task
by adding a piece of the end of the predecessor to a section at the front. On the first sec-
tion, this piece is empty. We use the string library we created in chapter 12.1.

produce DNA of length (n# break in pieces DNA | dna
:':cripi variables result | r script variables | result | piece | r
\;v—ﬂrp

\:ﬁrp
set resull | to list

set resull |to i
e — sel piece

length of (=0 =25

set resull | to ! join result [

set piece | to/ join | piece

set dna | to|rest of ‘dna from [r SSUg

add piece to result

rest of piece from

set result | to ! join | result : —_— :
o S TI0] piece) — @B |- pick random @ to €

add dna to result

32 A short description can be found at http://molgen.biologie.uni-mainz.de/Down-
loads/PDFs/Genomforsch/Modul10B_Skript2015-Hankeln.pdf.

12.3 DNA-Sequencing 112

The sections are still in the correct order, so reconstruction would == SIS o L0 e
be no problem. We change that by confusing the order. With the s e e

. n n
following command sequence, we get the wanted "soup" from ~et DNApieces | to(mix DNA pi

pieces of DNA.

In order to reconstruct the original DNA from this, we have to de-
termine which fragments were once connected to each other. We =
create a list of connections in which we enter the predecessorsand =l b il

the length of the overlap. Since the first section has no predecessor, set resul | to_ list

its overlap length is zero. repeat uniil © ' length of (st | = [

set | | to | pick random J to length of [list

.."ﬁnd connections r —
add | r il list || to (result

script variables

delete 'r of / list

set conneclions | to list

repeat until . ‘i > length of | DNA pieces

One piece of DNA "hung" on an- [connections 0
add | who is the predecessor of item i of DNA pieces other, if a sufficiently Iong over- 17 A B
connections . o 1 16 10
o lap can be found. Since similari- o s
ties can also be random, we de- 3 4 8
fine "sufficiently long" as "5". For ; 100 :
a given sequence, there are four ways to "guess" the correct character for each character. 5 2 7
The probability of generating the character randomly is 0.25. With five characters, it is then ; 135 1;’
0.25° = 0.00098, which is enough "improbable" for us. 9 - 9
10 13 8
The only remaining problem is to determine whether and how far two DNA sequences o 9
overlap. We put it (mentally) one above the other from the middle of the first and then 12 8
e) . 1 17 8
move the second step by step "to the right" until we find either an overlap or are too close : s .
to the end. Ready. 15 6 10
% 9 6
17 14 8

how far overlap ' end with | start

script variables | i hit?

warp

who is the predecessor of 'a ?
set hi? | to < @ false

[- e script variables | i overlapping

set | |to| round| length of start |/ g -

igth of -1 set overtapping | to [

) sef i
sef i to/(length of end -

' repeat until' ¢ i | length of (DNA pieces or ¢ overlapping |- []

set hit? | fto | set overlapping | to| how far overlap @ with item i of DNA pieces

change i

change i

if overlapping > []

Gl d fist (i — @) overlapping

12 Texts and Related Topics 113

12.4 Text Files and Frequency Analysis

Contents:

e store data on your own computer
e store data on a server

e table views

From dubious sources we got the information that there is an unbelievable secret (proba-
bly German) text in the file ciphertext.txt on our computer. We even know which directory
itis in. To be able to edit the text from Snap!, we create a variable ciphertext and display
itin the workspace. The content is zero. We select from the context menu of the displayed
variables the point import..., navigate to the named directory and select the secret text. It
appears in the variable.

-
F'

3 D) 71 SM) ASKIR)
[EG NTORUXRXN (] H [0 B = 07X Bl DOSDXTEIB! REDZTKI =|+ [
ciphertext 4\\ (XLIVEGE! x XNTG KXGRYXTMOER DR -*o:‘%ua OFGHR
e
f) l*l_'é QET Z| Il- () RSLLMXOGQ h # TO TO H.l.t .t ITOR! I:M#I
RXN Tl GSB GQTO BMATEJTO REDZTK, G ﬂ DX OTO QO OT |[ﬂ{f‘-_1 G0 4

To be on the safe side, we want to save the text in another place immediately. We select
the point export.... from the same context menu and get the file ciphertext.txt at the bot-
tom-left of the window, similar to saving a project. We find it in the download directory of
our computer. The described procedure is simple but cannot be controlled by the program.
It has to be done "by hand".

Text files are a simple but reliable tool for exchanging data between different computers.
In order to do this, we need an http server (which may also be the same computer) running
a script with the desired functionality - here: loading and saving text files.

Attention: There is a problem: If we use a server with HTTPS connection (such as the Berke-
ley Snap Server), we cannot access an external HTTP server. The browser prevents this. So,
if the given scripts do not work for you, please save Snap! completely on your computer
(your browser can do this) and start Snap! locally from your computer. The scripts will
work then.

In this case we want to select the server snapextensions.uni-goettingen.de on which the
script handleTextfile.php is located. We draw two costumes for a text server sprite that
indicate whether or not we are connected to the server. The data exchange with the server
should be logged in a variable infobox. By clicking the green flag, our variables should be
initialized, whereby the connection gets a rather cryptic value. This consists of the server
address, a login script and some variables — just PHP. We change our infobox to "table
view" using the context menu, which looks a bit better. The output window then is like

this: .
. Textserver connected [JRTO9)

o

n h clicked
set infobox | to list

Textserver infobox

0 items

snapextensions.uni-goettingen.de/mysqglquery php?server=db1&user=snapexuser&password=snapluser

set connecled | fo < .l‘alse

.';Wildl to costume DB-disconnected

(ciphertext

|

slider min...
slider max...

= normal
o large
o slider

import...
export...

@ —alD
@ —alD

(" infobox

"

12.4 Text Files and Frequency Analysis 114

We need a connection to the server. This is done using
the url block to which we pass the required data. We
record success or failure in the info box.

y
| beginning of WL EST L NEST R T B ype=connect to "2 | [= ok,

set connecled |to < true @)

:';witt:h to costume DB-connected

add to (infobox
else

set connecled | to <) false

switch to costume DB-disconnected

add to (infobox

After executing this block, the connection to the server is established, but the

text in our infobox is only partially visible. Therefore, we click with the left T connection to snapextensions |4
mouse button on the column header items and drag the column to a width | |2 ===y

that all text is readable. length: 2

We want to write data to a file on the server. The text

.wrile text = this text to file [filename = this file

to be written and the file name are given as parame- __
ters. First we attach the extension ". txt" to the file —'l-.'cfil’i variables (i [result

name and make sure that the file is stored in the sub- K to (uits
directory textfiles on the server. Then, the url block e BRE el Lot

transmits the required data. " i >[4
set flename | to

join FEGIES |I'- inning of (=T

else
Reading from a file takes place accordingly. s P —

read text from file (filename = this file H_ connected

Sél resulf | to

script variables | i result -
— url (join (connection EATCEHEICIENCY (filename text
add CENIECLNIE to (infobox =

set i |to(index of il in (filename add | beginning of result to |' length of (result [SUEWY to (infobox

i1 >

add [EGEE to (infobox
set filename | to -

0 ftextiiles/| beginning of SN 5T
else

S p— e e We export the text server

sprite into an XML file and

if connected
can use its functlonallty n

set resull | to| url (join (connection filename .
other projects.

édd [to (infobox

(=1 beginning of result to I'_. length of (resuli =P

add to (infobox

report |Please-connectio serverdirst.

12 Texts and Related Topics 115

After establishing a connection, writing and reading, our workspace looks like this :

) Deepl Ubersetzer % / } Snap! Build Your Own Bl X
C' | ® file/}/C:/Users/emodr/Desktop/Snapi%20Build%20Your%200wng20Blocks%204.1.2.1.html

k Y 1} Textfiles

= : D
Sensing | & | text server connected D
= | . 7 ane ([e @]
Soipls Coshumes Sounds

Vasiables

(" text server infobox

6
s [o osommnns]

W items
et oo 10 it T
. set comnection_| to [o«]
(Join jworld] ntip://snapextensions. uni-goettingen. de/mysalquery.ohp ?server=do1suser=snapexuserg reading from file
(st (] by | set comedted | ta < @ faise o]
(letter @ of :
(length of

switch to costume DB-disconnecied

| connect

[write. [ENE AW GRS GIEATILE] to file
< is | identical to | ?

QUMMM .- DL JKSLJKH SDFJKHHJSDKFHISDFJKJKH
rm (read text from file FI

[write: [to file A
(read text from file QI N
(part of Jl from @B to | =
(rest of il from &P

/beginning of I to €B

(replace all I [10

17 Textfiles blocks.xml A [0 et serversmi ~ Alle anzeigen | X

It doesn't help, we have to decode the cipher now. For this purpose, we perform a fre-
quency analysis - i.e. we count how often the individual letters appear in a text.

27 A B
1 char frequency
2 A 94
3 B 159
4 C 45
5 D 40
e 6 E 433
Initialize results list. No characters
found yet. y 7 F 248
8 G 570
9 H 4
10 | 380
1 J 51
12 K 182
13 L 290
e
note capital letters only - L M 283
15 N 13
16 o 364
replace item @K% of [1= ! ‘result | with [17 P 2
— e Changing the counter of the
| item @ of LN (TIEITTC) —) i resuit | + €D character P L 269
19 R 214
20 s 151
21 T 1034
22 u 62
23 v 131
24 W 2
25 X 303
26 Y 12
27 Z 79

12.4 Text Files and Frequency Analysis 116

Since E is the most common letter in German and it would be cruel (for me) if the text had
been written in a different language, we save the list of frequencies in a variable frequen-
cies and replace the large T in the ciphertext with a small € - because T is the most com-

mon one.

et frequencies | to ="i_=requenqr analysis of ' ciphertext

set ciphertext | fo(replace all I with il in ciphertext

Replacements were made with the usual loop:

replace all (old with new in | text
script variables i result
{.'Em
set resull to |}
set | |to

set resull | to/ join result | new
else

set resull | to/ join result | N of §

Because the result is not too impressive, we need more replacements. We take G for n
and perform this replacement.

set cipheriext | to(;eplil[:e all with [l in ' ciphertext

We can analyze the ciphertext quite well if we divide it into lines with
T e -0 z55m vsutxon AR U oL e

1
£ eEn NeORUXRXNFnQen-RelDOXeBM VEL eEneV VeMOZXBMen eFOSDXeEIEMen REDZeKILFeOVeO B

: ;
4

YX, EBM MXNe QEe ZFOCX, Gen RSLLMXOQ NelLEeRen! QEeleQ eOMXNenen, FnUeORKeEBMKEEMen nXLFOLJenen AeOQen EVVeO USO VeEneV ReElLe ILeMen. H
2 RXN el nSBEM XnQeOe IBMAeEJeO REDZeK, QEe EV UeOKXFZ EMOe0 QOeE OeElen En QXI KXnQ QeO eEQRenSllen USn EMnen NeJAFnRen AFOQen? EBM QenCe Q|

For example, we find words like éEn. We therefore consider the E to be an i. 3-
eEn NeORUXRXNFnQen-R
That was a good idea! Let's keep searching and trying replacements, and at some point, 3 . . rw

we'll find the secret! You just must hold out - there are only 23 letters left!

12 Texts and Related Topics 117

12.5 SQL Databases

| Verbindungsaufbau

[set Datenbanken |to lies Datenbanken
| wiihle Datenbank Nr. €5

[wiihle Tabelle Nr.

(lies Attribute von Tabelle Nr. §E

bl Kirsche,Ema, 14
[Fame [Vorname |[Funite |4 b FROM [schucier |ratrurs [urse | 4 » WHERE
Jschuelerid_nummer [egihatiurs id_numme IS, fengt 17
[natkurs kursnummer Jegkurse kursnummet | GROUP BY » HAVING

kurslehrerkurz fB <3 AND >
RDER BY

Contents:

e access to external databases

e SQL results and tables

e parameters with selection boxes

An important application of IT systems is access to external data sources. On the one hand,
the Internet is available, on the other hand, the use of SQL databases is common. Since the
use of this type of application is somewhat complicated in many computer languages, it is
often handled separately from the algorithms. This makes this part of computer science
quite boring: you either create ER diagrams on paper or query databases with special client
applications, e.g. PHPmyAdmin, but do not use the results any further. With the help of
Snap! this can be done differently!

We need a server that runs either on another computer or on our own, and on which - in
this case - except to an http server and an SQL server there is a PHP script called
mysqlquery.php. We send data required for an SQL query to the SQL server using the
parameters type, query, command, ... The result of the query is either an error message
or a table with results. If necessary, the script prepares it to be displayed as a list by Snap!.
The source code of this script can be found e.g. on http://snapextensions.uni-goettin-
gen.de.

We create a sprite called SQLserver, which shows by its costume whether there is a con-
nection to the database or not. Some attributes such as connection, connected, current
table, etc. store the current state, and the processes are logged in an infobox. This sprite
is saved as SQLserver and can be loaded if required. The new blocks required for SQL
queries are globally so that they are easily accessible for queries outside the server sprite.
They are stored in the SQLblocks.xml file and must also be loaded.

T
o
-
M ¢
-y
L4
E I
-y

12.5 SQL Databases 118

First of all, we need access to

ect
the external SQL server. For o

!;el infobox | te list -

this purpose, we set up acon-
databases | to list initialize local attributes -

nection setup block. The local
tables | to list

attributes are initialized, and =
attributes | ko list

the connection data is stored pr———— T
in the variable connection, [sy
so that it does nothavetobe © i = -

.
entered each time. Thenthe tormem—o ::r:ccnnacuon/
(4

. . . joi ection TS =
connection is established, Midig U (join (conmection I ED - T | E—— y
4

and the success or failure is || R gy
noted in the variable cON- 5 ke o i T

nected. | add to (@fobox
else

sel connected | to .Tals-:.-

switch to costume DB-disconnected

add LG to infobox

With the help of the reporter block read
databases, the SQL server is asked for the
existing databases. These are returned as a

read databases

script variables ' dbs

list. For the actual query, the value "getDBs" |Gkl url | join [connection

has to be appended to the connection data =g ol PR T e e T
as "type". =

set dbs | to(split dbs by

repeat until © not { item of (dbs =

delete of (dbs

add to (infobox

The connection setup and the selection of a
database can be saved as a block sequence. [==tREElEEm S GOl E LG G n n T
choose database no. EE)

The last block selects the specified data-
base. Of interest is the small arrow next to [eaai st e =
the parameter 3. If you click on it, a selec- s

tion list with the possible values appears. i/ (n > length of (databases

add CEECEEELEENEIE] to (infobox
else

set cumentdatabase |to item (n of (databases

sét resull | to
url | join connection current database

set cumentiable | to | |

cet fables |to read tables

add (join ifchosen to (infobox

12 Texts and Related Topics 119

A selection list can be created in the block editor by right-clicking in the dark area. You get omions :
a small context menu with the item options... In the pop-up window Input Slot Options
the possible input options are entered. Y

Block Editor

Edit input name

Input Slot Options

@
L-F
L}
@

Enter one option per line.
Optionally use "=" s keylvalue delimiter and {} for submenus. e.g
the answer=42

A

In a very similar way, the system determines which tables are contained in the selected
database and in which attributes the tables are structured.

read tables read attributes from table no. (m# =1

script variables (tbls

set thls | fo
| nnection
sl oin |SHDW-TABLES-FROM- lEtype:getTables ir

set ibls | fo(splhit ibls by
repeat until ' not { item

GRS of (this '- —_—
_ delete EERY of delete of (clmns

add to (infobox add to (infobox

With the help of the new blocks we can find out which ta-
bles are available and which attributes they contain. In the

context menu of the list received, the result can be dis- WFS o po—

played permanently using the "open in dialog" option. In | set databases |to read databases open in dialog...
choose database no. E

this way, the values required for requests can be clearly ar-

ranged on the screen.
read attributes from table no.

Table view

12.5 SQL Databases 120

We have now created the conditions for submitting queries to the database. For this we

. . . AVG() MAX()
need SQL aggregate functions and operators. Using the data from the table views and two - -

COUNT(Il) MIN([)

types of SELECT blocks, these can be used to interactively compile SQL queries.
<M H Y

- . NOT
k4 | N AND

SELECT [EJ] FROM] WHERE [l

SELECT JEd [l FROM] WHERE GROUP BY il HAVING

ORDER BY LIMIT
- N L . < . I OR I

e N)

Please note that only the texts of the queries are Sprache = "Deutsch”
generated! The requests are not (yet) executed. =

These blocks can now be used to create and control SELECT requests.

K SELECT Name,Kontinent,Einwohner FROM land muttersprache WHERE (land.Kuerzel = muttersprache Landkuerzel AND Sprache LIKE "English”)

land. Kuerze! Elmuttersprache Landkuerzel i AND) LIKE [FEY

For the execution of such queries we have a
- last - block available. An SQL command is exec SQL-command [query

passed to it either as text or as a result of a script variables (result

SELECT block. Any empty entries in the reply /| item @S of (split (query by §Bd |=
list are deleted.

sef resuli | to

split

url

join [connection query current database

by

repeat until - not (item of (result. [=l

delete of (result

add to (infobox

SELECT (what, (@firibs.., FROM (myfables.., wHERE (cond The simple SELECT block
script variables (result (i builds an SQL query from
set resull | to the parameters. It uses a re-

i (what -8 porter list = string.
set resull | to | join result

U ‘what = NENLI

set resuli | to [join (result EEJNME

list (list | $arrowRightOutline string
script variables i result

-

set resull | to|join(result (list attribs c> string G0 et i to

set result | to i

repeat until* (i > || length of (list g0

—

set resull | to | join resuli | jtem (i of (list M

else

—

set resull | to | join [result (st mytables o siring

[

change i by &

report ".ioil'l result | ftem (i of (list

12 Texts and Related Topics 121

With a full SELECT block, this is no more complicated - only longer.

SELECT what attribs... FROM | mytables... WHERE (| cond ?
GROUP BY /(groupatiribs... HAVING (havcond 2 ORDER BY
orderatts... how LIMIT (n#

script variables | result

set resull | to EEERE

if ‘what =§g -

If all are meant, it does not depend on

set resul |to [join result QLG
resu Join [-FROM further attributes. s

else

Ui (what = EEINLEH —
e e e N AIDISTINCT- Insert DISTINCT if necessary -

(¥ | length of (attribs | > [i] -

Append all atiributes
set resull | to| join [result [list (attribs > string [FEEI separated by commas <

if © ' length of | mytables

report |ERROR'~tabIes»missingl Error if the tables are missing. Y

else

set result |to | join result [list (mytables o siring -
Append tables separated by COMMas,,

[N cond § > hd
Append WHERE clause if necessary y
set result | o | join result SRS cond

if ¢ ' length of (groupatiribs > [i] -
Append. GOUP BY
set result | to| join result EEEGIVANE (list [groupatiribs o siring if necessary 2
L RO havcond N > b
Append HAVING it
set resuf | to | join result [GEWIEY havcond necessary >
if ' ' length of (orderatis > i -
Append ORDER
set resuft | to| join result EEELEEEE (list (orderatis o string BY if necessary -

if < how = -

sort if necessary
set result | to [join (result “

else
if

set resull | o [join | result DEEM

if - is'm a number 2 -
lirnit the output if necessary -

set resuil | #o [join (result JEITIE ‘mn

12.5 SQL Databases 122

We can work with it now. answer N

f] A North Americ, 103000 [
set answer | to 4 AnguitaNortn America 2000
exec SQI-command BY Nothorands Antiles,Norn America,217000 [8
I| ~/|Name |Kontinent |Einwohner 4 » FROM [iand |muttersprache 4 » WHER!] American Samoa,Oceania,68000 |
¥ 4 = Imuttersprache. Landkuerzel . 3.1, T1} 5t
¥ [Fitersprache Sprache |LIKE Engleh | g Austraa, Oceania 18335000 8
W panrin Asia 517000 8
{J oize Nortn America, 241000 J8
EBermuta North America,65000 [8
[Barbodos North Amorica 270000 |8
1 Bruneisia 528000 |8
{24 Canada North America,31147000 |8
Y Cocos (Keoing) sands, Oceania0 |4
{24 Cook isands,Ocoana, 20000 I8

L Chrictmae leland Ocaania 26500

And it can also be more complicated: How many people speak which language?

answer Bl
set 3"55“;;{_ io 5 457 =
exec SL_comman 251 QT S

SELECT | ~ SUM() FROM [land WHERE 232 Luri,67702000
land Kuerzel (= muttersprache. Landkuerze| s GROUP BY HAVING <77 233 Luvale, 12878000

ORDER BY » [DESC »| LIMIT | 234 Luxembourgish,435700

25
236 Madura,212107000
Amazin | 237 Maguindanao, 75967000
g 238
239
210

242 Makua, 19680000
243 Malagasy, 16790000

The resulting SQL library is intended to test SQL commands interactively and then - if suc-
cessful - integrate them into new blocks that allow the database to be used without SQL
knowledge. We clarify this with a simple request.

For a new project we first import the SQLblocks library, then the | connect

SQLserver sprite. In addition, we create an SQL user sprite. This asks | FEEEs | set daiabases | to. read databases
choose database no.

the SQLserver to establish a connection.

Afterwards, query blocks can be created, which, for example, ¢
ask schueler for

determine the data that are important for school statistics.

criterion = COUNT(| criterion) E

HAVING C

From another sprite, this method can be used without
knowledge of database queries.

¥ students by [EEEFRIEED

12 Texts and Related Topics 123

12.6 Tasks

1. A simple form of block encryption is to insert the text to be encrypted into a table
with several columns from left to right and from top to bottom. If the last line is not
filled, then any letters are inserted. The encrypted text is obtained by reading the
table from top to bottom and from left to right.

Example:

DIESE > DRIHTHIHITSECEEETIHISXUMGMETNLEX
RTEXT

ISTUN

HEIML

ICHGE

HEIMX

What is the key? Implement the procedure.

2. Eliza is a well-known program that simulates a psychotherapist. He answers
randomly to statements of the patient by either asking "typical" questions
("What would your mother say?") or taking these from parts of the patient's
sentences ("What did you mean when they say: ...").

a: Find out more about the project.

b: Realize the project.

3. Genetic algorithms simulate the evolutionary approach of nature by randomly gen-
erating new candidates to solve a problem. In this case, palindromes are sought, i.e.
words that are read forwards and backwards are the same. The procedure consists
of an initialization in which a random initial population is generated. In this case, a
lot of random words. Afterwards a loop is run again and again, in which candidates
for a recombination of individuals are selected based on a fitness function. At least
one new candidate is created from two candidates. After that, random changes (mu-
tations) occur. In the resulting new generation, the "best" candidates for the next
round are selected on the basis of the fitness function (selection).

4. The determination of the Levenshtein distance between two strings is used to de-
termine the "degree of relationship" of the strings. Typically, these are DNA strands
from the characters A, C, Gand T.

a: Find out more about the process.

b: Implement the procedure.

13.1 Funktion Terms 124

13 Computer Algebra: Functional Programming

Contents:

1. advanced string operations

2. writing JavaScript functions

3. predicates and top-down-development

13.1 Function Terms

We want to show the possibilities of blocks by means of a small "computer algebra sys-
tem". To do this, we have to define what functional terms are.

term P sum Y
syntax diagrams
»(product
r :
product r»@—» sum 4>@——>
sum: 'y » summand >
summand: » number Y e—
» potency

v

number: A4 i i i
|
potency: =m
L J‘ _/
number number

Functiontermsaree.g.: 3 4x (2x-1)(x*2+2) (x)(x"2)(1-2x"4)

—
v

125

13 Computer Algebra: Functional Programming

13.2 Parsing of Function Terms

To work with function terms, of course, we need someone who understands them. We
draw Paul, the little mathematician, and then we make him clever. First of all, Paul must
be able to read function terms. To do this, he asks the user for a corresponding entry using
the block ask <question> and wait from the Sensing palette. We shift the whole thing
into Paul's method, which we define as a function. So, we select the oval block shape in
the block editor. If we have defined a variable, e.g. term, we can assign the result of the
input to it.

Next, we check whether the entry is correct. We move the corresponding methods to a
sprite called Parser. In this we want to program functionally on the one hand and solve
the problem on the top-down way of proceeding.

We create the locale block (for this sprite only) for the Parser is <term> a correct term?
as a predicate, which can only return true or false as results. After that we have a nice
title, but unfortunately still no content. Nevertheless, we can already use the block in
scripts - just like other blocks. This allows recursive operations and is suitable for top-down
development. Paul can ask the Parser, for example:

ask Parser |for <9is gl a correct term? ~ of Parser
with inputs term | |

Since, according to the syntax diagrams, correct terms are either sums or products, we

move the problem there by creating two corresponding predicates - still empty ones - lo-
cally (for this sprite only), because the rest of the problem doesn't concern external ob-

servers anymore.

Snap! evaluates logical expressions completely, which is nice when side effects have to be
considered. However, this increases the runtime of tree-like call structures enormously.
Therefore, we first write two predicates for the lazy evaluation of Boolean expressions:
the second expression is only evaluated if the first does not already determine the result.
As identifiers we choose the operators && (lazy and) and || (lazy or), which are often
used in programming languages.

The predicate is <term> a correct term? can now be specified completely.

We continue this procedure for all elements of the language definition of correct function
terms. First, we'll take care of the sum. This consists of either a single summand or a sum-
mand, followed by the correct operator (+/-) and a sum. We can write this directly if we
still have an empty predicate is <term> a summand?

We have to be careful that our terms - strings - are not accidentally interpreted as numbers.
For this reason, we have always set the type of input parameters term to "Text". If we
forget this, the character string "123", for example, could be interpreted as the number
123. For example, the second element of the string is a 2, but there is no second element
in the number 123. A corresponding access would lead to an error.

Paul, the mathematican

b L W Please -enteratermiG T KT

sef tem | to r ask for a term

functional and top-down
programming

top-down design
with empty methods

— sum A—F

lazy evaluation

Pay attention to the
type of parameters!

13.2 Parsing of Function Terms 126

We need something else. The entered term is no longer examined in its entirety, but we
must split it into two parts: the beginning of <term> to <character> and the rest of

<term> from <character>. In addition, the position of a character in a character string is
S . . . String processing
determined: index of <character> in <term>. In this case, we want to implement them

. . with JavaScript
as JavaScript methods, because time matters.] P
functions.

beginning of term to | char from | char

JavaScript function (B4 EEE] 14
te'_": “"‘:‘:“’ti"gi’i o JavaScript function (B0 B) 4
zeichen = zeichen.toString();

s - T erm = term.toString();

[LF(term. length==0) return - zeichen = zeichen.toString();

else s
if(term.length==2) return "";
if(term.index0Of(zeichen)==@) return ""; 1; = ! :

#lse return term.substring(@,term.indexCf(zeichen)); if(term.index0f (zeichen)==8) return term.substring(l,term.length);
else if(term.indexOf(zeichen)>=8) return term.substring(term.index0f(zeichen)+1,term.length);
else return "";

index of in

JavaScript function (B
term = term.toString();
zeichen = zeichen.toString();
if(term.length==8) return 8;
else

if(term.index0f (zeichen)<8) return 8;
else return term.indexOf(zeichen)+1;

So, we write the predicates is <term> a summand? and is <term> a sum? each with an
additional security prompt.

e i

<9is term an addend? ||
beginning of term to an addend?
rest of term from Q] a sum?
beginning of term to Jl an addend?

rest of term from J] a sum?

report Qis term a number? 11 - Qis term a potency? ‘

13 Computer Algebra: Functional Programming 127

We are coming to the end. is <term> a number? is very easy to write when we have
is <term> a cipher?

term a cipher? term a number?

th of £ 1| length of (5 1) | — 0

unicode of ({ &P i term > and

{ unicode of &P i term) LS
¥V is ‘term a cipher?

¥ is (letter &P oif term a cipher? g&&

¥ is Rest von ‘term ab &) a number?

And how do you check a potency? That's also in the syntax diagram - we just have to copy
all the details.

v

30

X

term a potency? I'U

Nuf term) =[] number number

Vis beginning of term to [J] a number?

if not | ' ——e
' 1§ beginning of term to N | = [

. false

rest of term from [

true .

)

13.2 Parsing of Function Terms 128

Now only the product is missing, which can be formulated in direct analogy to the sum,
because a product consists (with us) of either a compounded sum or a sum followed by a

product.

VO & (torm 3 product? r’@" sum —>®—_,

 tength ot ())1

also pretty

recursively

[1 e LT o B 2 e 0
letter letqtllnf@ of ‘term |)]

L et ot tem feom) - 8 11
9 is (rest of term from [l a product?

We can use it to check (parse) whether an entered term corresponds to the selected syn-
tax. If this is the case, you can continue working with it. Our mathematician Paul here asks
the Parser.

|5et term | to @ ask for a term

(ask Parser [for < 9is I 2 correct term? of Parser
 with inputs term

Of course, he packs this query in a separate block to give the impression that he can answer
something like this himself.

(Paul term (T ETTEET))

3 e @)

13 Computer Algebra: Functional Programming 129

9 derivation of | term

13.3 Derivation of Function Terms

if- Vis term asum?

We now want to determine the first derivation of correct function terms. We | report L= R i e i)
collect the necessary methods from the parser again. Since there are only two
report

possibilities for the internal structure of terms, the first approach is simple.

When applying the summation rule, we must determine and
apply the rule for sums to | term

derive the summands. Because we have defined unsigned

script variables | result | summand | sign ' h

numbers, we treat them separately, thatis, weadda "+"if nec- [=% |
essary and then split the sign again. Then the different possi- it ol

set h |to
bilities are treated according to the rules of mathematics.
if not { ter 1 Jof {0

When applying the sum rule, script variables were used fora isg

change. This shortens the procedure a little bit. e
repeat until |

set sign | to | letter @) of h

¥ derivation of summand | summand
i sei h |to Rest von h ab &P
‘ { letter &P of summand |= & or{ letter &P of summand |[=3J beginning of h to Gl | = [

set summand to Rest von summand ab &B ¥ beginni i h - i
i beginning of to =[

if 9is summand a number? summand | to (L)

h [to i

summand | to ! beginning of h to Jl

= 0| rest of (i) from [

1 U ¥ beginning of h to I | =
set summand | to! beginning of h to QI

R T rest of () from [-
else

set summand | to | beginning of h to Jl

set n | to | join J (C

Ui beginning of h to JI

il i beginning of h to gl

set summand

| beginning of summand to [Jll | rest of summand from N | 3
set h o i
else

I.beginninq of summand to [Jil] |} rest of summand from gl set summand |to | beginning of h to G

joii

[P R —
| rest of summand from il |- &9

set h | to|join g f) from

set summ: o (9 derivation of summand summand

Ul not ¢ summand =[]

set resull | to | join result sign summand

set resul | to | Rest von result ab &)

13.3 Derivation of Function Terms

130
Only the product rule is still missing. We can just write them down - with the addition of
some brackets.

9 apply the rule for products to | term
if/ ¥ is (rest of (term from Il a produci?
join

9 apply the rule for sums to | beginning of

tof fC Bfrom | BoW) |
tof £ i from [|

{ ginning of £ hito) |)
9 apply the rule for products to/ rest of term from [l

join
9

apply the rule for sums to | beginning of |"J
[|

tof £ Bifrom | RO |

The result can even be read to some extent:

(Bauttorm (CPETETREA))

WCPTTIZITTN (2x-3)2-x-xA23)+{xA2-3x+1)(-1-23x422) B

for i 5 Bl a correct term?
with inputs £ 4»

Set derivation | to
|I. ask Parser |for (9 derivation of []

of Parser
else

£\l Thatis-not-a-correctterm. Try-again. RLTE 2 BT

with inputs term

It should be noted that the derivatives do not necessarily correspond to our simplified
definition of function terms and therefore often cannot be "further processed".

13 Computer Algebra: Functional Programming 131

13.4 Calculation of Function Results and Graphs

If we can parse function terms, then of course we can also calculate them. The procedure
is very similar to parsing, and it is much easier if we already know that the term entered is
correct. We leave this work to Paul, who up to now - apart from self-portrayal - was quite
superfluous. But, as a mathematician, he can do arithmetic!

We want to calculate function values and then draw the graphs of the function and its first
derivative. Paul must be able to draw at least one graph.

|9 draw graph of (term with color | color

|_9\ draw a coordinate

hide variable term - script variables (xp [(x (y

.
hide variable derivafion clear screen o warp
switch to costume pen

set size to @ %
set xp |io

tell Parser |to/| hide
!:et pen color to

set x |to((xp [/ €D
|

set y |to(9 calculate ‘term ((x)

—

set yp |to((y x &P

if < (color =]

clear
gu to x: i v- &
pen down A

giutux:ﬂv:
go to x: G v- EEP
(LROR o 10 BT 130]
g;utux:ﬂv:

sat pen color to

go to x: EZID v: @D [Be

pen down y
go to x: v: £

g;u to x: @D v: §&D

go to x: §EP v: G

g;u to x: v:- &P

if (color =§

Lsel pen color to
else
Lsel pen color to

-gutu X (Xp y:(¥VP
go to x: &P v: EL [pen down
pen down p repeat I
go to x: P v:
pen up

g0 to x: €B v: - sety |09 caleulate term (x)

scalin [
9 s set yp |[tol(y x EP

go to x: ([Xp y:(¥P

change xp

r—

set x |to((xp / &P

go to x: ¥:

switch to costume Faul

set size to L) %

In these scripts all blocks already exist - except for one. The calculation of a function term
at position x is still missing. We specify the corresponding scripts only because they are
very similar to those of the parser.

13.4 Calculation of Function Results and Graphs

132

¥ calculate (term

Y caciote s term (%))
BT 7 cocuots proaut term ()

¥ calculate sum (term ('x#%)

script variables | summand | rest [pos+ pos-

set term | to [join [(term

set pos+ |to | length of | fuf Rest von term ab &P L0 TN

set| pos- | to | length of [LEC LU Rest von (term |ab @3 L

L0N999909

sel pos+

to EEEEEH

sef pos-

sef summand
join

set rest | to | join J 2§ Rest von term ab @& L0 SN

if pos+ =pos-
set summand | t0

to i

set resi
else

set summand

(Ui Rest von term ab @ <

set rest | to| join 4§ Rest von term ab @& |00 co

report ¥ calculate summand (summand ((x)

¥ calculate summand (summand ('x) + (9 calculate sum rest ('x)

¥ calculate product | term

Qis Il 2 product? of Parser

calculate sum | beginning of ['ri

¥ calculate product | rest of term from [Jll ('x)

9 calculate summand | term (x#)

script variables number ' exponent

to [J
to]
to | letter &P of term

number
exponent
sign

teerm | to/ Rest von term ab &P

for with inputs term

ask | Parser

i beginning of term to [l | =1

set number |to 1]
else

to il

set exponent

else

set exponen! | to!l rest of term from N

sign

-g

number x [x |+ exponent

script variables | result

to]

set result

r-epeat Y

set resuf | fo(result x x

report result

AU term Nio MDY to N ((x) x

13 Computer Algebra: Functional Programming

133

With their help Paul can now shine!

when clicked

clear

set term |to B

set derivaion |to [

go to x: EE v: €D

set term | to @ ask for a term

EUd FEaah i <9 is il @ correct term? of Parser

9 draw a coordinate system
9 draw graph of term with color F

set derivaion | to

| ask Parser |for (9 derivation of of Parser | |[with inputs' term

ask Parser |for < 9 is il a correct term? of
with inputs derivation

@ draw graph of | derivation with color 3

else

L=\ "W That-is-not-a-comect-term_-Try-again. QLI 2 JE=_ed

show variable term

show variable derivation

G N (e 3-3x)(1-x*2)
go to x: @[v: [P

not of the given
syntax. | cann't
draw it.

l /\ [Thedorwauon is
\/

13.5 Tasks 134

13.5
1. a:
b:
2. a:
b:
3. a
b:
c:
4.
5.
6. a:
b:
7.

Tasks

Make the outputs a little more readable.
Combine results in the derivation so that they correspond to the given syntax and

the graph can be drawn.

Define signed numbers and change the processing of the terms accordingly.
Proceed accordingly for floating point numbers (numbers with decimal points).

Define advanced function terms, which can contain quotients, using syntax dia-
grams.

Enable parsing of these function terms by writing appropriate predicates.

Form derivatives by implementing the quotient rule as a string operation.

Perform task 3 accordingly for trigonometric functions.

Allow function terms that require the use of the chain rule. Implement appropriate
predicates and string functions.

Let the graphs of the other function types draw after they have been parsed.
Allow a selection of the graphs to be drawn (function, first and second derivation).

Introduce a "function calculator": a function term is entered first. If this is correct,
values can be entered repeatedly, and the corresponding values are determined.

14 Artificial Plants: L-Systems 135

14 Artificial Plants: L-Systems

. Snap! Build Your Own Bl- X {) Deepl Ubersetzer x

<« C | & Sicher | https;//snap.berkeley.edu/snapsource/snap.html | i

| add (&

%ﬁl"’ﬁ [create the drawing instruchtion
et angie | to g7 [draw.

[set tengn | to

[5at]rues_[ta st

| add EEOEE to (Hies
| add @ to (rules

(st sen [0

[set angle | to F2E]

(st tenom |10 1

U ALY
[set ruies 1o list
[e SRR to iles
[Set aepmr |10 @
=
etier @9 o7 K [set angle |to EJ
{length of T [t onam 103 (length of/instruction
(unicode of g

Contents:

e using a list as a stack

e simple context-free language
e use of Turtlegrafik

14.1 L-Systems

In Aristid Lindenmayer's systems??, plants are described by a rule system that creates the
drawing instruction for a turtle from an axiom, a first character, by substitution. One can
imagine that - starting from a shoot - the plant is drawn until the next branching point. This
position is stored on a stack, then the branches are written one after the other, returning
to branching after each branch. Turtle masters only forward movement (F) and turns
around a fixed angle (+ and -). Saving the turtle position and direction and restoring this
state is symbolized by square brackets ([and]). A simple plant with a triple branch can be
described by

axiom: X rule: X 2 F[-X][+X]FX

If this rule is applied several times, the plant can grow at the positions where an X has been
inserted. For the older parts of the plant to grow with it, arule F = FF is often added to
the rule system.

33 https://de.wikipedia.org/wiki/Lindenmayer-System

shoot with triple
branching

14.2 Create the Drawing Instruction

136

14.2 Create the Drawing Instruction

First of all, we need a rule system, i.e. a list variable rules, to which the desired rules are

added line by line as character strings. The character to be replaced is at the very front,

then follow -> and the replacement from character 4 onwards. The recursion depth, the

specified angle and the length of the drawing path are also assigned to variables.

|

create the drawing instruchtion

set hil

to <) faise

repeat until. k> length of rules

When
drawing instruction, we
start with the axiom.
Then we create an aux-

creating the

iliary string h in which
the substitutions are

Preferences

to list

sel rules

add TEHESIGIEEY to (rules
add to (rules

sat | depth | to [

-

set angle | to
set length | o

The drawing state-
ment can be quite
long. Therefore
"warp" is used to ac-

performed per run: celerate the whole

whenever a character thing.

to be replaced is found —

| léng'th of | instruction

in the old character

statement, we append
the replacement to h.

f (I o (k. ot (rfes) = (AT Xl mstruction') 3

set 0 _|tof join (0 (o] item (6 of Grules L&D

-
true @

set hi to-

Finally, h replaces the
drawing instruction and
the next replacement

if © not ' hit
set h | toljoin h ([(EiEFi [UF instruction |
by &9

| set instruction | to ()

éhange i

14.3 The Stack Operations

We use a simple list as a stack for storing the turtle posi-
tions. Operations are only performed at the top of the list
- we already have a stack. Storing is usually done by a push
operation. We store a three-element list with X- and y-po-
sitions as well as the current direction. Use pull to retrieve
the last saved position and remove it from the stack.

cycle is started.

set stack |to list

insert (([i52 x position | y position | direction at) of (stack

script variables (p

set p

to ' item @ of (siack
delete 5 of (stack

14 Artificial Plants: L-Systems 137

14.4 Drawing the Plants

Drawing the plants is very easy because all our sprites can

be used as turtle. We enlarge our working area to 500x500

script variables 1_ poslhum E
(select stage size... in the Settings menu) and let the turtle
draw the "foot" on which the plant grows. The character . -

-

string is then processed character by character using the [5'“’ . Drzw the “Toot” and take the starting position. e
set stack to [list

character instructions, with the corresponding turtle opera-

tion or a stack operation being executed for each character. | pen down
set pen size to
As a small delicacy we draw the "tips" of the plant green. "g0 to x: @D v: €ED

(Peaks can be recognized by the fact that the next step is to Dl i :ﬂ'
set pen size to
return to the last turtle position, i.e. a pull operation follows.) [point in direction @

[seti [wom
Examples: R > Gl reen) 4

~ : : All characters of the
to| letter (i of [instruction statement are processed. .

-

Periorm the appropriate
operation depending on the
character. Y

go to x: | item KD of (position y:(item X of (position

point in direction item &g of (position

= G o e o G| -

add [EVB OIS to I Colour only the tips green. z
= set pen color to
set depih | to § else
=et angle | to E[Y if lulnrnfm -0
set length | To set pen color to
else

set pen color to

pen down
move (length steps

sef miles |to list

add 1o (roles set rules | to list
add to (riiles add to (rules
set depih | to 6 add to (Tules
set angle |to oo | depih |0
e length | to set angle | fo
set lengn |10

145 Tasks 138

14.5 Tasks

1. a: Search the web for grammars for L-systems. Create the appropriate plants.
b: Select a plant species, e.g. a certain tree species, and study its construction thor-
oughly using pictures. Pay particular attention to growth areas. Then describe their
structure using an L-system grammar. Check the result using the program.

2. a: Why are the grammars considered so far "context-free"? What does this mean for
the plants produced??
b: Check the web to see if grammars other than context-free are used to describe ar-
tificial plants. If yes: why actually?

3. a: Inthe program the tips of the branches (as "leaves") were dyed green. Replace these
green pieces with more beautiful leaves.
b: Transfer the principle to drawing the thickness of the branches. Just come up with

something!

4, Plants don't always grow the same: there are storms, raging children, hobby gar-
deners, weather disasters, ... Bring some randomness into play to produce differ-
ently shaped plants of the same type.

5. a: The stack operations were always performed at the top of the list. Could one also
take the end? If yes: why?
b: Would something change if you insert at the beginning of the stack and remove the
positions at the end? If yes: why?

6. The users of the L-system program can enter anything else as grammar. Check their
entries with a parser before trying to create the plant.

7. a: How would the rules for L-systems be changed if we wanted to create three-dimen-
sional plants? What did this mean for the drawing of the plants? Are there turtles
for three-dimensional drawing?

b: Find out about topics where artificial plants are used on the net.

8. Do they also draw artificial animals? Artificial people? If yes: where? How do they
do that?

15 Automata 139

15 Automata

i Snap! Build Your Own Bl X

<« C | & Sicher | https;//snap.berkeley.edu/snapsource/snap.html Y| i
N E Y f+ Kevin speaks
Motion = B -
Lok s || o fren |
po— o o dr ble:
Pen =

Delete a variable

[hide variable |

| script variables (a

(list
N in front of

item @B of &
all but first of B

length of B
<A contains
| add [to B
[delete g of &

[eaemail adressesaml ~ ~ Alle anzeigen | X

Contents:

¢ finite automaton as a predicate

e hyphenation and pronunciation

e coupled Turing machines and control structures

15.1 Correct Mail Addresses

We want to use a finite automaton (FA) to check if a mail address is correct. To do this, of
course, we must first know what "correct" means. We specify a syntax diagram:

mail address:
HE-O+OrO—~0—0—

In this simplified form, the participant names consist of the characters a and 1 (as substi-

tutes for letters and special characters) in an arbitrarily sequence, followed by the usual
@. The mail server name consists only of b, and - separated by the dot - follows as domain
name de.

For example, correct email addresses are a@b.de ala@bbb.de, 1@c.com would be

wrong.

mailto:a@b.de
mailto:a1a@bbb.de
mailto:1@c.com

15.1 Correct Mail Addresses

140

Translated into a finite automaton we get its state diagram:

Translation into a Snap! script can well be done as a predicate,
because the machine's response is true (the final state Se has been
reached) or false (another state has been reached, typically the
error state S¢). In the script, the checked address is scanned char-
acter by character. Starting from the initial state Sp, the system
checks whether the current character is permitted. If it is, the sys-
tem changes to the next state specified in the state diagram, oth-
erwise to the error state. The script is quite long but consists only
of nested alternatives that represent a direct translation of the
state diagram.

When checking the mail addresses, the predicate created can be
used.

M1 a@bbbb.de J]y g Tw i

¢ is | adresse correct?
script variables ' state i
set state | to §Y

set i |to]

repeat until

if - { letter i of adresse or{ letter i of adresse

set state | to §]
else

set state | to 51}

set state | to B4
else
set state | to st}

«
set state | o 5
else

set stale | to

sel state | to]

W letter) of ET T
set siale | to 54
else

set state | to]

T e -
- | lettel

sél state
else

set state

else
set state to [§

set state to §]

change i | by &9

repori < (state = [

15 Automata

141

15.2 Hyphenation: Kevin Speaks3*

that works surprisingly well. In addition, we want to get Sprite

Kevin to pronounce the entered words. The second sounds

Mealy machines can be used to implement simple hyphenation Enter a word, il N
say it (if | can).
/ —

more difficult than it is: if we have the syllables, then for each
syllable we can create an image with the mouth position whose
name corresponds to the syllable (e.g. AU.png) and record the
spoken syllable (e.g. as AU.wav). We drag these files into the
Costumes or Sounds areas of Snap! and call them from

there.

We start from the adjoining, very simple Mealy ma-
chine. Its input alphabet consists of vowels (Vv), con-
sonants (k) and other separators (t). It inserts some
separators for hyphenation, but of course it works
incompletely and partly wrong. It separates the
strings vkv in v-kv and vkkv in vk-kv. First of all, we
have to be able to enter a word into the program. For
this we use the command ask and wait. The result
is available as answer in the Sensing palette. This
word is to be separated.

Since users of programs never follow the guidelines,
we first make sure that only capital letters appear in
the word. To do this, we must be able to convert at
least one single character into uppercase if neces-
sary. We have already written the function for this in
Vigeneére encryption, as well as the function for the
conversion of whole words.

A word converted to upper case can be similarly trans-
formed into a sequence of the characters v, k and t.
The vowels are easy to find, the consonants are letters
that are not vowels, the rest is treated as separators.
For practical reasons, a t-character is added last. This
means that at least one character is always present -
and we always reach the state 0 at the machine at
last.

34 based on an idea by Wilfrid Herget.

spited (7T

K/ 2
k / kkk
t/ kkt t/kt
K/
Start v/ k-kv v/ kv

t/t t/t

set resul | to | join result [

else

. (omcote ot < TG vt {ominte ot < T

|5el resulf tn'join- result [§
else
| set resull | to ! join result [J

set resull | to| join (result [J

15.2 Hyphenation: Kevin Speaks 142

It's time to split the sequence. We read character for character v, k or t

and write down our automaton: Depending on the state, the next state is it word

specified, and characters are added to the output. script variables | state | result

. . set siate |to 0
Attention: the states are handled by nested alternatives, so that after a =T
S8 | i]

change of state the following statement is not executed without a new e

character being read in first! B S 1 (o
Finally, we must convert the vkt sequence back to the original characters = P& =~ | |
- with the separators between them. To do this, we run through the vkt
sequence with the separators (index: i) as a pattern and build the result
sequence from the characters of the entered word (index j). However, we

. set state | to]
only change j if i does not point to a separator (-) in the pattern '

set resul | to | join result ¢

create splitted (word from template (template

script variables | result
set siate to 4
set resull | to JJj

set i |tof]

set | |tof]

repeat | length of template

i Ui template) =

set resull | to [join (result §J

set resuft | to | join (result

c-himge i |by &9
state | to []

change i | by &P resull | to (join result [§

state | to]

We can now use these functions one after the other to separate a word: resul | to | join result

script variables ' pattern

set palien | to | change] in capitals

set pattern | to | franslate [Jjjj to v k-t-sequence state | to

set pattern | to [split vkt pattern result_|to | join | result

set spitted to| create splitted answer from template pattern

to (]
" D

And of course, we can bundle such instruction sequences in a new block. =
set resull | to | join ' result [I

else

split | word set resull | to join result [Ii3

create splitted ' word from template
report |,-

split vkt LG word B GBS e vk T sequence

repoﬂ result

15 Automata 143

The words, divided into syllables, should be pronounced by the computer, similar to navi- .

gation systems, automatic time announcements or other "computer voices". If we store olololieee——
syllables instead of whole words, we need considerably less storage space, because the save J) (concet)

syllables can be used several times. (But it doesn't get any nicer!)

First, we choose a few

Skripte Kostime Klange
Neuer Klang:

s A
& a
1 %]

(here: German) words: [meow H o

Autobahn, autonom, Au-
tomat, Pronom, Promille,

Kamille, Kamel, Kaktus.
For short syllables we can

use the built-in sound re-
corder. Or we speak the LR PRI Eommins G
syllables (e.g. in Scratch)
into the microphone and
save the WAV files under

the name of the syllable in

T0
20:00.00
0

Wikrofonlautstarke
4
r
1z
~

BAHMN
00.00.00

capital letters. We drag
the sound files into the split [EErTr by B

Sounds section of Snap!

Since the entered words have been separated (see above), we get (approxi-

n n i | i e R
mately) the syllables when we "decompose" the word. To do this, Snap! provides == P

the split by command. The block creates a list of the parts of a word. If we enter

Au-to-bahn and separate at the sign "-", then we get:

If our sound files have the same name as the syllables, we can play them with play sound
until done by selecting the syllable as input parameter of the block.

play sound | change | item @D of (split by B4 |in capitals until
done

We can let the computer pronounce words by

e separating the entered word

e and breaking it down into its syllables,

e from this list, "pronounce" the first element in
each case set splittedword | to (split word

e and delete it from the list

e until the list is empty.

script variables | syllables [splitted word

sef syllables |to (split splitted word by -

repeat length of (syllables

_——

show RCUUER item @IS of (syllables NURSTIC]E

delete G of (syllables

15.2 Hyphenation: Kevin Speaks

For each of the different syllables we draw a costume for Kevin.

AU TO BAHN
These costumes are displayed while speaking the syllables.

Words are pronounced by calling this script with the corresponding syllables.

script variables = syllables = splitted word
set splittedword to ! split word

set syllables o split splitted word by ﬂ

repeal length of (syllables

delete) of syliables

show | syllable

sef speaking |t0 < true @

if - (syllable =
switch to costume AU
[I;Iay sound AU
wait (05 secs
switch to costume TO
wait 0.7 secs

switch to costume NORMAL

if - (syllable =
switch to costume TO

ﬁla\r sound TO
wait (05 secs

switch to costume NORMAL

if © ‘syllable =
:':witl:h to costume BAHN
[play sound BAHN
wait 05 secs

switch to costume MEL

switch to costume NORMAL

if - ‘syllable =

switch to costume KA

15 Automata 145

15.3 Coupled Turing Machines 3°

If one describes Turing machines by state graphs, then the meaning, which is assigned to
this model, seems to the learners strongly exaggerated, because the problems, which can
be described by a still readable graph, are nevertheless quite simple. Much more powerful
tools can be generated in the model of coupled Turing machines, in which the initial state
of the next machine corresponds to the final state of its predecessor. More and more pow-
erful designs can be created from very simple systems. The result is a kind of macro lan-
guage in which topics of predictability and decidability can be formulated.

Our system of elementary Turing machines works on a Turing tape, which contains only
ones and zeros. The zeros serve as separators, so that numbers must be represented by
ones. The number n is coded accordingly by n+1 ones, so that the zero also has a code. In
the standard position, the head of the Turing machine is above the one on the far right.
All groups of ones must be separated by exactly one zero and there are two zeros at the
left edge of the band. After the work the machine is back in the standard position. The next
machine starts working out of this.

The 1- and 0-machines are available as elementary machines, which write the corre-
sponding character at the head position on the tape. That's all they're doing. The small left
machine | moves the head of the Turing machine one position to the left, the small right
machine r to the right. There is also a testing machine p that checks which character is
present at the current head position. Depending on the result, it branches into one of two
states to which further machines can then be coupled. That's about it.

Because they are often needed, we design two new machines, the large left machine L,
which runs to the left over a group of ones, and correspondingly a large right machine R.
These can be realized as follows:

0
LA
1 1

The copying machine K1 copies a group of ones to the right.

K1: L 1 J
p—»O0RR1LL1I

o,
RRI

If the copying machine K2 copies one group of ones over a second group to the right, then
we can already calculate sums with the help of a Turingadder A by:

A:K2K2L1RIOIOI

Give it a try!

35 from Eckart Modrow, Theoretische Informatik mit Delphi, emu-online, 2005

15.3 Coupled Turing Machines 146

Instead of testing the machines on paper, we want to develop a macro language in which
our coupled Turing machines can be realized. Since we don't want to use the normal Snap!
command palettes, we disable them after right-clicking on a palette (hide primitives). The
palette is empty after that.

For the simulation of the machines, we need a tape consisting of ones and zeros. We
choose a list tape, because it can be easily changed in length. For the display we create
some images with ones and zeros of different sizes, whereby the head position is displayed
in yellow. The working speed and the cell size should be changeable on the screen. Overall,
we need the variables initial caption, tape, tape length, pos, cell type and pause(ms).

The initial caption must be asked, and an appropriate band must be generated and dis-
played.

The default position must be taken on this tape, where the value of the variable pos is
determined.

enter initial caption

saitch to costume Turtle
go to x: y:
ask initiabcaption? G LU RVG T

set inifial caption

set i
hide
clear

g0 to x: @ED v: @

show

o answer

set tape
to

repeat | length of (initial

to list [[

l—c;ange i | by &P

repeat until ¢ ' length of (tape | > (tape length

add [] to (fape

if celltype =]

switch to costume eins-1

| g0 to standard position

oot vt G T32) or (oo 1ot wove L)

The tape is then displayed by "stamping" images of the costumes side by side on the stage.

O find blocks... *F
hide primitives

Pen

Make a block

eins4

eins2

0

null akiuel-1

null akiuell-2

eins aktuell-1

15 Automata 147

Altogether we get as start command sequence: [T e T
g\m to standard position

To show the head position we calculate its screen coordinates and switch

to one of the yellow costumes.
if ‘celltype =[]

go to x: | @D + (GLD-T ‘pos - €D

L

The elementary machines can now be quickly generated:

go to x: | =) + (@] ‘pos - €D

L

if -
if - ' item (pos of (tape

U cell type =]

switch to costume null-akiuell-1

else
switch to costume null-akiuell-2
U cell type =]

switch to costume eins-akiuell-1
else
switch to costume eins-akiuell-2

wail"”pause(ms) PR 1000 e

change pos | by &

-
show head

replace item (pos of (ta replace item (pos of (tape with]
< (celltype = if - ‘celltype =]

switch to costume nul-1 switch to costume eins-1

else else

switch to costume nul-2 switch to costume eins-2

show head show head

The generation of the testing machine p is somewhat more complicated, because it must

be able to execute two different scripts - depending on the tape letter. These scripts must Use programs as data:
therefore not be evaluated as parameter values BEFORE the p-machine call is executed, C-shape code

but two scripts are passed, which are to be executed AFTER the call, depending on the tape

labeling. The "parameter values" are scripts. When typing the parameters, we select Com-

mand (C-shape) to prevent the evaluation. The parameters are identified by a A as

scripts.

r =

p 0> "'_:'-cript{l.li -1-> "'_scriptl.li

if © item pos of (f@pe

15.3 Coupled Turing Machines 148

With these machines, the others can be
developed "normally recursively" in Snap! u
as blocks. 1

(i
=]
R
B3 3
- -
1
~—
~—
=]
1
R. [4 |
-]
K1

Instruction set of the

The work of the machines can be monitored and thus checked on the screen. So after that Turi .
uring machines

they are used as new blocks for more complex problems.

A Snap! Build Your Own Bl X
< C' | @ Sicher | https;//snap.berkeley.edu/snapsource/snap.html g
h & {+ coupled turing adder 1 | e
{ contral 5 P e —
e | - 1 Jsorte | celltype [(E0D) | (pause(ms) 70
/ draggable - -
Seripts

Operators
Vasiables

Delete a variable

Fi (cell type

Costumes ~ Sounds

Make a block

| set tapetengtn |to LI
[set cettype [to O[o[1T1[oT1I1T1ToT1[1T1T1TofolofoJofoJofo]o]o]0
['go to standard position

[§ show tape

—
|a

[enter initial caption
[go to standard position

15 Automata 149

15.4 Cellular Automata: Iterated Prisoner's Dilemma3®

We want to build a cellular automaton based on the prisoner's dilemma?’, but slightly
modified for trading on the Internet. The behavior of the trading partners is simulated by
machines that sit on a grid closed in both dimensions. They trade with the partners within
a Von Neumann neighborhood. As is usual on the Internet, they exchange goods for money.
There are different types of business partners:

¢ Naive always cooperate, i.e. provide the correct equivalent value.

e Fraudsters never cooperate.

e Shrewd people cooperate at first and then react in the same way as their partner

did last time.

We describe the behaviour of trading partners using state diagrams:
K,K v B,K K,Bv B,B K,K B,B

K: , cooperate” ‘ ' '
B.K
B:,cheat” ° c_a
K,B

The ,naive” The ,fraudster” The ,shrewd”

If we arrange such automatons in a grid, distribute them randomly and color them
according to their state (green as "naive", red as "fraudster" or yellow as "shrewd"), we
get an image similar to the following:

(" generation)
9 o

36 from Eckart Modrow, Zelluldre Automaten, LOG IN 127 (2004)
37 https://de.wikipedia.org/wiki/Gefangenendilemma

15.4 Cellular Automata: Iterated Prisoner's Dilemma 150

The further procedure is simple: First all partners trade once with their neighbors from the
Von Neumann neighborhood, i.e. with the neighbors above, below, left and right. After-
wards all partners evaluate the success of their neighbors. As opportunists, they take over
the status of the most successful neighbor or maintain their status when they were better
themselves.

In the first generations, the "fraudsters" usually prevail. But then clusters of "naive" or
"shrewd" people form and a wild "battle" begins.

(generation (T) (generation (I)

(_generation “7,‘ (generation)

It is true that the "naive" are hard pressed by the "fraudsters". But they do quite well in
groups. The "shrewd" usually prevail over the "fraudsters" - depending on the configura-
tion - and cooperate with the "naive". In the end, the "shrewd" usually win - but not always.
In groups, the "fraudsters" cheat each other and win nothing, while the "shrewd ones"
assert themselves against them and are more successful with the naive "behind their
backs". The processes depend strongly on how the different behavior is weighted.

Global variables are suitable for evaluating the system, e.g. a "gross national product" as
the sum of all trading points. Observing the sometimes surprising processes provides start-
ing points for discussing ethical questions. Even if the example cannot, of course, be di-
rectly applied to social systems, for most people we have found a new argument for coop-
erative social behavior, which is not derived from transcendental or philosophical consid-
erations, but from efficiency. It is in clear contrast to the egocentricity of primitive Darwin-
ism, which often dominates public discussion in this respect. A diagram may serve as an
example in which, on the one hand, the total numbers of the three types of automata
(naive, fraudulent, shrewd) were plotted, and, in addition, the sum of the total trading
points achieved by all types, i.e. the "gross national product", is somewhat thicker in blue.
One can see very nicely that "social prosperity" (if one wants to derive this from the "trad-
ing volume") is contrary to the number of "egoists" - of course under the conditions set.

15 Automata 151

Among them, fraudsters usually die out for lack of success, and the naive harmonize mag-
nificently with the shrewd - if they are among themselves. If the behavior is weighted dif-
ferently, fraudsters can be quite successful. So, it depends on the rules of the game who
succeeds. You should think about them, not just in a simulation!

From a programming point of view, the system is rather simple, but sometimes extensive
due to the change of viewing direction.

A new automaton can be described by a list of lists,
whereby the automatons at the grid places
correspond to sequences of numbers, which contain
on the one hand their state and the reached trading
points, on the other hand the "memory" about the
past behavior of the neighbors.

-

an automat is described by the list
[(state, new state, points, top,
|set 2 |to list bottom left, right). The last four
; values include the behavior of the
_':l"“' i neighbors on the last move. -
sef row o list

@& Juugm

15.4 Cellular Automata: Iterated Prisoner's Dilemma 152

The cellular automaton can be displayed by &
show | automaton i

stamping different coloured costumes (small

rectangles) next to each other on the work area. This script variables (x |y | state
has been changed to the size 800x600 pixels before.

Once the machine has been created, the new gen-
erations are created from the last generation in
each case.

i item y of automaton

delete points
all are trading

| all change state

show ' automaton

switch to costume witty

else
switch to costume cheater

| cout states

change generation

change x | by &P

change y | by &P

The scripts have a very similar structure: a Il grid locations are iterated.

all change state “delete points

script variables x 'y :':cript variables | x

cell x 'y changes state T
replace item & of |] Ll item 'y of automaton

change x !
= change x | by &P
change y
5 change y | by &I :
set y [tof] ‘all are trading

script variables x |y

item 'y of automaton with

i automator;

change x

Z cell x 'y trades with neighbors
change y by &P éhang-e x | by &P

change y | by &P

15 Automata 153

The trade of a cell with its neighbors depends on the one hand on the states of the partial
machines, and on the other hand on their previous behavior. Since this data is stored in
the machine values, it is easy to retrieve. Shown is the trade with the left neighbor:

cell 'x# y # trades with neighbors

§cript variables . ,
xp 'yp [cell neighbor ' neighborCooperates | cellCooperates

determinecell s G

. set ifo
Torus world: the opposite edges are con- L =

set x to
nected. -

determine neighboring cell = il

set xp [to)

set neighbor to item xp of [} 4i automaton

is the cell cooperating? = e
¢ item G of (cell

" item D of (cell ! item) of (cell =§ B

is the neighbor cooperating? set neighborCooperates | to
| item @K of (neighbor |

¢ item @K of (neighbor = #] item @S of (neighbor

save neighbor's behavior "for later” | e
replace item B of (cell with |
else
réplaaa item B of (cell with [J

if they both cooperate: if celiCooperates

profit between 2 and 10, if

nothing else replace item R of (cell with
item ER of (eell ‘

the neighbor is cheated:

profit between 1 and 20
item €D of (cell. + 1

cheat on both of them: \
replace item) of (cell with

almost no profit item @ of (cell |+

Trade with the other three neighbors is almost the same. The differences are only in the
positions of the stored behavior.

15.4 Cellular Automata: Iterated Prisoner's Dilemma 154

Once the values of a generation have been determined, they can be counted and compiled
in a list - and this results in a diagram.

“Zihle ;die ; Zustinde "
draw diagram

script variables ' n

_r;cript variables ' i values | oldvalues
clear

set pen size to P

set pen color to

pen up

go to x: EEP v: EED

pen down

[RGB N -350 B'S

go to x: EEHP v: EEHP

set i |tof]

repeat nMax

set x [to [

set zustand |to item (KD of | X |uj item(y of (automat set oldValues |to ' item EED of (table

if - (zustand = J repeat until' ‘(i > length of (table

| change n by &P set values |to item (i of table

= | set pen size to P

| set pen color to

: pen up

go to x: +|:m Y
& + (tem @ ot (clavaives JIED

;pen down

go to x: +[a,i i - v:
€D + | item @ of (values [P

change i | by &P

else

change g | by item &K of I x Ui item (Y of (automat
change x | by (1]
change y | by &P

set pen color to

.pen up

gotox: EED+ @i -&) v

Table view &SP + [item @B of (oldValues VL&D
3% A B c D ',De"' down
1 MNaive TitForTat Befriiger Gesamt go to x:
2 482 443 1575 44855 o
3 290 420 1790 26006 + [item @D of (values VAP
4 242 476 1782 17359 r
set pen color to
5 197 564 1739 15422 1
pen up
6 185 535 1680 13764 1
7 150 741 1609 13999 go to x: +(Eli -@) v
8 143 850 1507 12798 #
9 120 93 1440 13416 E&EP « | item € of (okiValues) TRLH
10 124 1043 1333 13375 pen down
1 18 121 1261 14152 [
go to x:
12 13 1189 1180 14810 :
13 127 1282 1091 16339 + [item @B of (values V4D
14 137 1301 1062 17407 : -
15 171 1348 981 17907 | set pen size to &)
16 164 1434 902 19298 set pen color to
17 214 1458 828 19904 | pen up
18 198 1493 809 22189
19 21 1535 754 23016
20 230 1586 684 24373
21 2% 1641 628 25108 1
pen down
22 239 1700 561 26407 ’
23 238 1780 432 27386 go to x: | P + |'o x WY 2] y:
24 23 1820 444 20028 ﬁ
+ values 0
25 255 1832 413 30572 €EP + | item € © / €ED
P—

15 Automata 155
15.5 Tasks
1. Develop a finite automaton as a predicate for detection

a: correct license plates from three different cities.

b: correct IBAN numbers. You can limit your search to a few banks.

c: passwords of sufficient complexity. Define beforehand what "sufficiently complex"

means.

2. Improve hyphenation by taking into account

a:
b:

double consonants.
typical prefixes.

3. Develop and test a coupled Turing machine,

a:
b:

that copies one group of ones over another (K2).

which pushes one group of ones to the left to another until the groups are sepa-
rated only by a zero.

which multiplies two natural numbers with each other.

which writes a 1 after two groups of ones, if they are the same length, otherwise a
zero.

that subtracts two natural numbers - if that's possible. If she doesn't, she'll go
crazy: she'll run away to the right.

Replace the trade of all partial automata with the neighbors "per round" by a ran-
domly controlled process in which machines trade with neighboring (with any)
partners.

Replace the Von Neumann neighborhood with a Moore neighborhood.

The machine can easily be converted to an Ising model by considering the ma-
chines as spin grids. Per round, the majority of the neighboring spins tilt the spin in
the middle in their direction. There are various magnetized areas.

Find out about Stephen Wolfram's linear cellular automata.
Implement the model.

16.1 LOGO for the Poor 156

16 Projects

16.1 LOGO for the Poor

Contents:

1. simple text-based programming
2. parsing

3. interpretation of input

We want to develop a small programming language that we can use to write programs for
a turtle - that is, for every Snap! sprite. The project should show how a text-based lan-
guage works and how the error messages are generated. We reduce the problem a little
by allowing one-letter commands only. If we look at the possibilities of the pen used in
Snap! and select some of them, we get a possible command set (very small here):

Mn moves the turtle by the distance of length n in the current direction
Tn rotates the turtle on the spot by n degrees

U lifts the pin

D lowers the pin

We add a control structure to these four commands, here: a loop - and the minimal version
of a programming language is ready.

Rn{ drawing commands }

We cast this rough sketch in the form of syntax diagrams: A turtle program consists of a
sequence of commands separated by semicolons. The program ends with a double cross

control instruction j r®—>

drawing command

sign.

turtle program:

A 4

\ 4

D,

control instruction:

\ 4

»
»

The syntax diagrams
can easily be extended
by additional com-

mands.

drawing command

Y
\/

¢

number —»@

number 'y >

drawing instruction:

number ¥

A 4

12t

number: natural numbers

Programs are e.g.: D;R4{M100;T90};U#
M100;T90;M100;T90;M100;T90;M100;T90#
D;R180{M200;T183};R360{M1;T1}#

O

16 Projects 157

We assume that superfluous characters such as spaces are removed from the program
first. We can achieve this, for example, by converting entered lowercase letters into
uppercase letters and allowing digits and the four special characters ",", "#", "{" and "}".
All other characters lead to the error message "ERROR 1: Wrong character in the input!".

get command
script variables ' input result i

sk Rl and wait -
ask SICECIETE and wa A simple input method

set input | o answer .
E with character control.
set resull | to [

seti to]

repeat ungil i >l

{ unicode of |

£ unicode of (Eii,
sel resull | o
join

-1 8) unicode

{ unicode of | . r
f ——+" uppercase letters
¢ unicode of =

set resull | to /| join | result

else
unicode of |

unicode of |

i input [y or i (Ui input
four special letiers e

i input or 4 letter 1 of £ 7770

set resut | to| join [result

else

set resull | to [

set i to ' length of input

change i | by &P

réport result

16.1 LOGO for the Poor

158

The input must be checked to see whether it represents a permitted LOGO program - it is

"parsed". In this case we can develop the parser as a finite automaton32. The unspecified

transitions lead to an error state.

Ovlv..v9

In the individual states we can decide which signs
lead to subsequent states and which do not. This al-
lows us to indicate which characters were actually
expected in the event of incorrect entries. If we num-
ber these error messages of the parser in the order
of their occurrence, we get the adjacent table.

If we also evaluate the position of the character in
the command where the error occurred, then we can
even display the error.

state possible error message
So, Se 2: unknown command
S1, S10 3: <;> or <#> expected
S5, S4, Sg 4: number expected
S3 5: number, <;> or <#> expected
Ss 6: number or <{> expected
S; 7: <;> or <}> expected
So 8: Zahl, <;> or <}> expected
9

: unexpected end of input

The translation of the parser consists only of a very long copy of the state graph - of nested

alternatives.

38 Why is that, by the way?

16 Projects

159

parse | program

script variables char /i state | result
set state | to EY
set resull | to [J

set i to

repeat until ' ¢ i |- length of program or ¢ result - 0]

set char | to letter i of program

it state = j

v

if - € char | or { char [— ¥

set state | to B
else

& 4 char 2SI or € char (=1

set siate | to 5

if char =[j

set state |to
else

set resull | to B

state =]
8 char =

set state | to

if char =}

set state |to {3
else

set resull | to E]

& The rest of the state diagram.

state se!

set | to | length of ' program

b
-

change i by &P

if | state = 53

J;,'_.J_' list result i 1)
élse

result = [

report listf] i — &P

report list result

The parser parse <program> is
guided through the state dia-
gram by the character string of
the program. If there is no per-
missible transition in a state, it
reports the corresponding error
by the value of the "result" vari-
able.

Correct programs have the
value 0 as a result.

16.1 LOGO for the Poor 160

The interpreter run <program:> can assume that the entered program is error-free - after
all it was parsed. Therefore, it can take the first character of the program one after the
other - this is the next command - and delete this character. Depending on the command,
it executes this and searches for the required parameters, e.g. the angle of rotation. All
processed characters are deleted. This ends when the program consists only of the last

character —the "#".

run | program

The program is processed charac-
script variables command number loop content

ter by character, the processed

S

repeat until - | JJj program || < f characters are deleted. We used

B — T 0 the function
all but first letter of <string> of

set command | to | letter) of program
| the library words, sentences.

set program | to | all but first letter of program

PenUp command (U)

PenDown command (D)

search for a number

set number to | ¢ . _— =
| unicode of ter ‘. 1 program — unicode of [j]

set program | to [all but first letter of program

turn » (number degrees Turn command (T)

if command = [JJ

move (number steps Move command (M)
else

set program | to | all but first letter of program

set loopconteni | to i run the loop (R)

et 7 of) Search for loop contents until the
Ui program | =

next "}"...
set loop conteni | to | join loop content
sel program | to | all but first letter of program
set program | to | all but first letter of program
run | join ‘loop content J ... and execute as often as the

number indicates. Append a ";
to the loop contents.

set program | to | all but first letter of (program

16 Projects

161

If we output the error messages in plain
text, then our programming language will
slowly become usable.

We can evaluate programs through a short

script.

go to x: P v: P
point in direction gy

sét theProgram | fo get command

set theResuli | to | parse (theProgram

if * | item @ of (theResult = [j

run theProgram
else
show error theResult

ERROR: 5 at
position5: number,
<> or <#>
expected

show error

result :

script variables | error text nr

et m

to item K of (result

if ‘nr =H

sel emortext

| o unknowns-command

if- ‘nr =

el emoriexi

| 1)<, = 0r=<#F=expected

if (or =E

et emortext

| (o number-expected

if ‘or =[

et emortext

number = =-or=#=expecied

if ‘or =[]

el emoriexi

if - ‘' mr

set emortext

{ nnumber-or-<{=expected

L ===t eanpected

if ‘nr =f

et emortext

numbers= =«or=}=-expected

if ‘nr =

el emoriexi

say | join [GEER] [nr item SRS of (result

| i unexpected-end-of-input

g ' error text

16.1 LOGO for the Poor 162

Actually, it is a bit strange to develop a very primitive text-based language in a graphical
programming language. However, experience shows that learners usually combine the
work of computer scientists with the development of cryptic texts - i.e. they sometimes
want to program "really". We can accommodate this wish if we use such a mini-language
in a standard field of computer science, in this case automata theory. Since we develop it
ourselves, we promote understanding for the processing of texts, which takes place on
many levels in IT systems. In addition, we have found a highly differentiating topic suitable
for division of work and challenging activities, which quickly leads to presentable results.

Tasks:

1. Expand the language LOGO by

a Home (H) command that sends the turtle to the center of the screen.

a Clear command (C) that clears the screen.

a Color<n> (Fn) command that allows you to select a pen color.

a command TurnTo<angle> (Nn), which rotates the Turtle to a certain angle.

20 T o

a command MoveTo<x><Y> (Vx,y), which sends the turtle to a certain point.

2. Develop a scanner that allows you to enter the turtle commands in long form, for
example, to write Turn 90 instead of T90. The scanner should recognize these
commands and output them again in short form.

3. Introduce an alternative: Depending on the color of the pixel at the location of the
turtle, it should be possible to execute different command sequences. Reduce the
syntax appropriately and implement the command.

4, Two types of loops are to be introduced in this way: The turtle should execute
drawing commands as long as (WHILE) or until (DO) the turtle is above pixels of
a specified color. Allow position-dependent predicates as well.

16 Projects 163

16.2 SnapMinder by Jens Ménig*

Contents:

e import and visualization of large amounts of data
e advanced list operations

e connection to socially relevant issues

The program is based on data from the
Gapminder Foundation®, which pro- Life expectancy, years
vides tools for visualizing statistical
data on the Internet. One of these
shows the development of the coun-
tries in the recent past, whereby life
expectancy is represented above in-

come and the size of the "bubbles"
corresponds to the total population of

the country in one year. If you move

the slider, you can impressively follow

the temporal development of the o
countries in this coordinate system.

Income per person, $/year (GCDP/capita)

The data used - and many others - can be found in tabular form at https://www.gap-
minder.org/data/

3% With permission of the author, available at snap.berkeley.edu/run#pre-
sent:Username=jens&ProjectName=SnapMinder
40 https://www.gapminder.org/

https://www.gapminder.org/data/
https://www.gapminder.org/data/
http://snap.berkeley.edu/run#present:Username=jens&ProjectName=SnapMinder
http://snap.berkeley.edu/run#present:Username=jens&ProjectName=SnapMinder

16.2 SnapMinder by Jens M&nig 164

16.2.1 Importing Table Data

To import the required data, we load the file into a spreadsheet program and immediately
save it again as a tab-delimited text file. Let us take CO2 emissions per person from 1751
to 2012%! as an example. For the first years we find only a few values, but then it gets

dense.

We read the generated text file into a variable via its context menu (import...). To do this,
it must be displayed in the work area. We get a very long string of characters.

‘

We turn them into a list:

importierte Daten
238 items |
ia .
na —

| Angola

Each line again contains a character string with the script variables @}

sef daten | o list
to
repeat until = length of (importierte Daten

data for each country, whereby the data are

separated by tabs. Therefore, we "hack" the list line
by line in the same way, but with a different
separator, and add the sublists to a new list
variable called daten. add (split item (i of (importierte Daten by G to (daten

Fhimge i | by &P

This provides the (daten
dat P 235 BBBBBEEBICCCCCCCCDDDDDDDLEEEEEEEEIFFFFFFFFF GGGGGGGHHHHHHHE (NI JJJJJJJ0) KKKKKKKKI,
necessary ata or 1 1904 1005 1996 1007 1998 1999 2000 2001 2002 2003

editing in Snap!.

0,071144382 0,06410684 0,0579647540,0523333650 048546686 0,03744603:0,0241700010,0272552620,0145834230,02270369¢

2
2
4
5 0,60660539:0,66420426°0,64790454:0,49926118€E0 56922559 0,97134194°0,9835530461,0473201541,21400307:1,38206627°
6 3111325685 3,3467306 3,3542392873,0156704213 60825764¢3,0602446172,87952767¢2,7204533112,8893127822 80923627
T
8
4

6,29066909¢6,5208170447 0616028547 5335420448 0227136578, 1123454127 8OTTT576¢7, 7005151367 414281032
0,33129069°0,90961623:0 84241267 0,57689056°0,55621245¢0,677616537 0.68507907 0,67633919:0,85052139:0,587810214

10 1,7896654912 45355765¢2, 3027161042, 081568483, 18896039¢3,0547918583 21432366+
1 4,6500427784,70071773:4, 5800804344 656432528¢4 407461474, 5842381174 4383773024, 35377586¢ 450892460 4 75631047«
12 3,58332574°3,51558650913,66156335¢3,77057075° 3,80967752 3,98114130£3,81969379£3 5552853513 2730670823 502002221
13 0,9014731121,08200075£0,8218310041,0456687371,09560073:0,9894442071,12642705°1,1553227370,99420870:1,12016756¢

41 CDIAC: Carbon Dioxide Information Analysis Center

16 Projects 165

16.2.2 The SnapMinder Data

The program contains the required data as described above in the variables income data,
life data und population data.

Total population,1800,1810,1820,1830,1840,1850,1860,1870,1880,1890,1900,1910,1920,1930,1940,1950,1951,1952,1953,1954,1¢

ADKNAZIA,1p3ymsmsmmsmamssmms sy sm sy

Ll=dp 0 EER geo,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,14

1[I R Life expectancy,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821

It prepares them for further use with the help of higher order list operations from the
Tools library*?. As an example, we show the population:

set population | to Convert the population data into a list

keep items such that
[([EEET join input list: all but first of & | | > [|/ from

= ; (LI B H "
e B it (popubstion data by those "without interesting content".

(here in "one step") and throw out

Use only data from existing coun-

in front of

1 71 of [2] from tries.

Sort out unusable data

. i population | in front of ("... no nUmberS").

LGS B in front of

t of
input list:
‘]mn keep items such that (< is lf @ number |2 . from (split | by EiZRd

over

ui=s all but first of (population

sel population daia-cean | to
combine temsof Format

u'(=7 population

data separated by
commas and with CR between the
lines as population data - clean.

set population | to

The operations are very compact due to their nesting. S Tmmarmsra

|
|
[/
|
/|
|
|
||
|
||
|
|
[/
|
|
|

countries

(income

income data
life

life data
max col

max life
max population
min life

min population

 population

population data
population data - dean
population year index
scaling

If you take them apart, they are easy to understand. | length .,f Yy from

Let's take the first nested block as an example. It can

be read "from behind" as:

- Split the population data, stored in a string separated by line feeds, into a list. Split this
list again. The contents must now be separated by commas (csv format).

- Delete from the result all entries where nothing comes after the first entry.

- Assign the result to the variable population.

42 Jens Ménig uses a little trick: If you move the block of a list operation over the join block
from the string operations, which is displayed "empty" €Z® | j.e. without input parame-
ters, then it turns into the join input list-Block , which converts the
list into a simple string. The function can also be easily written by the user.

|.- i1z [split [by 1)'/=;! split (population data | by

16.2 SnapMinder by Jens M&nig 166

The program starts with three messages, which cause old country sprites to delete
themselves, and the other objects, especially the data lists, to be initialized. For the data,

it works like this:

when I receive iniialize |
Sél income | o
keep items such that

Process the data as described
above.
First the income, ...

T ¥ join input list: | all but first of B >[N from

split Jj by U =r ! split (income data by

keep items such that

GO join input list: all but first of B ... then life expectancy, ...

>0
split | by split (life data by

... and extract the countries
from it.

sef couniries | to| map [item @ED of B | over (]

income | in front of

Assign the income to the

countries contains .
countries.

Il but first of (income

set countries | to| map [item @ES of B | over (]

et ife |to
in front of Same for life expectancy.
couniries contains (1
Il but first of (life

set population | to
keep items such that

Write back the population
data from the auxiliary vari-
able.

LG join input list: | all but first of B from

=

split | by 1 | split ' population data - clean by

minlife | to [

to EO

to
to [
to

to

script variables (years (i

max life

Set some variable values.
max income

min population
max population
max-col

idx [last found idx

set years |to/ all but first of 1| K5 i population Extract the years.

set populafion yearindex | to ' list

\;ﬂl’]l

Create a list of years as an index.

repeat max col

set idx | to first index of (1 + @EP in (years

set lastfoundidx | to

édd idx to population year index

else
add (last found idx to (population year index

by &9

change |

broadcast remove all | and waik

broadcast iniialize | and wait

broadcast showall |
set turbo mode to v ®

16 Projects 167

16.2.3 The SnapMinder Countries

At the start of the program as many country clones, represented by a semi-

. . . when T receive show all
transparent rectangle, are created as countries are included in the country

set ghosi | effect to P
set size to (50
The main function of the countries is to position themselves in the coordinate | issa T

list. Each clone has its own index idX.

system of average income and life expectancy in relation to the year under

i

consideration. For this ... repeat | length of (countries — &P

9 go to data slot (slot # scaling | scaling ? change i ll? a

script variables ' dollars | years ' new size

= B ... they determine these data

set dollars |to| item (slol of [idx + P | income . broadcast slider changed
for their country, ...

set years to item slol of |1 dx + &P

if & length of (dollars | ~|fl + and r length of (years |- \f]
... determine the position ...

go to x:

LLIED) [/ 10y |of &B | /
| of (max income = @XIED) |/ log | of €B

top - bottom

... and their size, which is
given by the population of
the country in the year un-

item| vale of Slder + &P of population year index + P of . R
der consideration.

idx + @ vi population

4f max population

max size — min size

if - not € new size | = size

set size to (new size %

else
hide

This block is called, among other things, when a plot of the country, i.e. the movement in
the coordinate system with the year as parameter, is generated.

¥ plot track

script variables | slot

set siol |to [
@ go to data slot (slot scaling @ «

set pen size to
pen down
warp
repeat il
(;hange siol | by &P
IQ go to data slot (slol scaling @ >

pen up

¢ go to data slot | value | of Sider +) scaling @ =

16.2 SnapMinder by Jens Monig 168

16.2.4 Use SnapMinder

The presentation is impressive because, on the one hand, the countries move from bottom
left to top right in the course of time, i.e. they develop positively. But if you take a closer
look at some countries, this development is by no means continuous: there are abrupt
downward swings, backward movements, circles, periodic movements,... The program
gives rise to research into the causes of these developments, and there are a few surprises!

We show plots of some countries, then you should research!

USA Germany

China India

Norway Somalia

16 Projects 169

16.3 Connectivity: The World is Small*®

(nodes [FW)) [Cscalefree | [10nodes | [10links | [new]

(_links mJ- Iasanodegl onenode | [onelink | [diagram |

Contents:

1. topology of networks
2. extensive operations on simple lists
3. socially relevant issues

The handling of networks is often reduced to protocols and other technical details. But you

can also ask other questions, e.g. about the connection of networks.

¢ If we have n nodes, how many links do we need for the network to be largely con-
nected?

e Or vice versa: How many and which nodes must be destroyed for a network to break
up into its subnets?

e Or: What is the mean distance, counted in links, between the nodes of a network?

Nodes and links can be very different in nature. It can be e.g.
e technical links between computer systems,

e customer/supplier relations in the economy,

e the logical connections via linked websites,

e social relations between persons or groups of persons

e hydrogen bonds in organic compounds,

e neuronal networks

e or infection chains.

43 from: E. Modrow: Informatik mit Delphi — Band 2, emu-online, 2003

16.3 Connectivity: The World is Small

170

16.3.1 Random Networks

The starting point for such questions were Random Networks. They are created when we

build N network nodes (or pages, ...) that we subsequently link to each other. Let us take

the Internet as an example. If there are N pages with on average K links per page, then

with n mouse-clicks k" pages are accessible. We can reach virtually any page if itis: k" = N
-2 n =log N /log k. With 5 billion pages and k = 7, n = 11.5, i.e.: with about 12 mouse
clicks on average, you can visit any page of this network. Similar considerations and prac-

tical studies have been carried out on social relations, etc. They can be found under the

name Small World Phenomenon?.

If you display the distribution of links per page, you get
a Poisson distribution for Random Networks.

It is somewhat more difficult to decide whether a net-
work is (largely) coherent, i.e. whether all nodes are
connected to each other. We can answer this question
by coloring: start with one node and color all the nodes
that can be reached by it in the same color, then a co-
herent network shows a kind of phase transition: al-
most suddenly all nodes take on the same color.

You can see that the network - with the exception of a
few slips - is coherent if the number of links roughly

nodes @I) [_random] [10nodes | [10links

(Jinks @Z00) [asanode O] [onenode | [onelink | [disgram |

number of nodes
N

I —

links per node

corresponds to the number of nodes. Further links do little to change.

o) [on | [tovetn | [0t] [ome] o
e R

R) e] [] (00] (]
ot) [y e | [t] (o)

4 https://de.wikipedia.org/wiki/Kleine-Welt-Ph%C3%A4nomen

16 Projects 171

16.3.2 Scalefree Networks

Albert-LaszI6 Barabasi®® showed in 2002 that growing [(Kmwten £) ecalefree] [T05eiten | [0tk |
(_Links (T) [als Knoten] [eine Seite | [_einLink | [Diagramm

Anzahl der Knoten

b

networks like the Internet have a different distribu-
tion of links per node than Random Networks. It can
be described by a Pareto distribution. Brief descrip-
tions can be found under

http://barabasi.com/f/623.pdf or]
http://barabasi.com/f/624.pdf.

A Scalefree network can be created by alternately
adding nodes and links where the new nodes have

two links to existing nodes. The older nodes are more

2

likely to be linked than the younger nodes. Because Links/knoten

the network is always coherent, there is no need to
color contiguous nodes. But we want to make the size of the nodes dependent on the
number of their links.

e =
Links S) (5 o) [s | e i [Diagramen

Scalefree networks are the same on all scales, i.e. numerous nodes with few connections
are connected to a few nodes with many connections, so-called hubs. The connections
between nodes normally run from the start node to the next hub, then via a few more
hubs to the target node. Hubs can be, for example, people with many contacts (teachers,
representatives, ...), central computers or distribution centers in merchandise manage-
ment.

Scalefree Networks are extremely robust against technical faults. For example, if a network
connection happens to fail, it probably does not affect a hub, and if it does, other hubs will
compensate this. However, they are also extremely susceptible to targeted interference.
If only a few hubs in this network type are destroyed, the network disintegrates into its
individual parts.

45 A.Barabasi: Linked: the new science of networks, Perseus Publishing 2002

16.3 Connectivity: The World is Small 172

The topic is suitable as an introduction to discussions about vaccination protection, pre-
venting the spread of diseases, influencing political opinion-forming, optimizing the flow
of goods, ...

16.3.3 The Implementation

We want to create a fairly simple model as a tool for researching network AT Tabte view
properties. It is essentially based on a node from which clones are gener-

-
ha
ha
iy

ated and two lists, of which the node list contains the nodes already gener-
ated and the link list consists of sub-lists with the numbers of the two end
nodes of the links. With their help, methods can be implemented largely
independently of each other. They are used by the operating elements
shown. The controls depend on the selected net type (random/scalefree)

W00 @ W o W b =

1
2
3
4
5
6
Lé
8
9

and the display of the nodes (rectangular/round with different sizes).

-
o

))

.

L R AR I N R T RN RN VR
@@ NN @ R W W @

| — S — Buttons for switching

between net types or for

s-wilch to costume bScalefree
[T —— creating 10 nodes react to
broadcast [ElEE 2 mouse clicks:

_broadmst

node list and link list

wait 701 secs
when I am clicked

switch to costume bRandom

P ——

ot E—
if © (type of network =

add ask Node [for (@ nmewnode |of Node to (modelist

[change nodes | by &

Since we often have to iterate over such node lists, el

we introduce a new control structure that exe-

cutes an instruction for all objects in a list:

tell all objecis of (hst :

script variables (i This makes it very easy, for example, to
display all nodes:

repeat until© (i > length of (Tist

script variables 0'
create links per node Links pro Knoten

tell all abjects of (nodelist to | [§ show

16 Projects 173

New nodes are created by cloning the prototype.
) ? new node
The prototype can be asked to perform this

. 5£ripi variables | new
action.

(:..llilllgl! index | by &P
go to x: (pick random to v: [pick random to

if costume round

ask Node |for Q new node of Node

switch to costume circle-gray

set size to %

switch to costume square-gray

set size to [P %

set new | to(a new clone of mysel

run || set index to i of (new |with inpuis index

A new link is inserted into the network by trying to find two nodes that are
not yet connected. The link list must then be searched to see if the link index of (CEIEED n (I

already exists. If not, the search returns 0.

This allows the ends of the link to be determined. Since the resulting nets

are quickly becoming large, the search for them does not take too long.

insert a link

script variables | nodel node? | costume mo | ml n2

change i | by
set found | to < () false ce |_|iv &D

(g

if * / length of (nodelisi . > fJ

| report index

sef n1 | to | pick random P to' length of (nodelist

sef n2 | o | pick random @ to' length of (nodelist

set | |to]

set n2 | to| pick random ¢ to ' length of (nodelist

set found |to!l “; index of n2 in (linklist =[] XLl

i nl in (linklist = [}

by &9

insert a link from ‘01 o (N2

16.3 Connectivity: The World is Small 174

.inseri a link from 'n1# to (n2#
Once you know which nodes are to be

warp
connected from a link, ... =
’ script ;rLuZa_iJJ'::,____nndel node2 ,.___ca5tume no

then the affected nodes are |0 e | Feee e

searched for' séi node? |to ' item (N2 of nodelist

. s
... the costume according to the net dal

type is selected, and the knots are e e —
wme# | of . wme# of nodel < f]
asked to change to it.

costume# | of F | C me# of nodel | < Ff]

set costumeno |0 costume#® of (nodel

Fell node? to switch to costume with inputs costume no

if costume round

set costumeno | to | pick random ¢§FJ to
else
sel cosumeno | to | pick random @& to &P

tell model to switch to costume with inputs costume no

’—t\ell node2 to switch to costume with inputs costume no

The pen is asked to draw a line be- of Pen
tween the nodes.

Finally, the new link is entered in the R =t G

S

f;olor nodes connected to n1l
else

T costume round |

tell nmodel to switch to costume

With Scalefree Networks it is a bit eas- with inputs ' pick random gFJ to

ier, because the costumes are chosen tell node2 |to switch to costume

link list and the related nodes are col-
ored in the same way.

randomly. with inputs ' pick random FJ to EP

fell nodel to switch to costume
with inputs ' pick random §&J to &P

tell node? to switch to costume
with inputs ' pick random @& to g

of Pen

insert list nl1 n2 in linklist

16 Projects 175

The most complex part is the coloring of the connected subnets. We work with two lists,
from which the connected nodes get all nodes that can be reached from the starting
node. The nodes to be colored contain the nodes that have to be colored - sic.

~

color nodes connected to | node no #

_r:cripi variables
connected nodes | nodes to be colored | costume no i link

warp
set nodestobecolored to list

We start with the given node number as || ke el ISR L

the beginning and remember its costume. set cosumeno |to costume# of item node no of (nodelist

As long as there are still nodes in the list, |+ WS ZEE L 00

we examine the link list to see if the first et | to
node number of the connected nodes ap- | repeat until
pears in the link either to the left or right. ot link |0 item (1 of (nklist

If so, the other node is also connected to —_—_—
) o 4 item of (link | item @K of (connected nodes

the source node and is added to the list if B — L —
{ index of (1= @ i link | in (nodes to be colored |=

it is not already in the list. | mmnmrenT

add (1) @K i link)) to (connected nodes
..

¢ item @ of (link = item of connected nodes |} and
(index of | m in ' nodes to be colored | _ (]

to ' connected nodes

If the first node in the list is not yet con-
tained in the list nodes to be colored, it 2| i/ connected nodes | in | nodes to be colored
is entered there and removed from the list item 77 = of == == ==h k)" Ll

of connected nodes.

Finally, the costumes of all nodes to be [S-S
colored are set to the same value as the

o ui nodes to be colored | of (nodelist o)
costume number of the initial node.

switch to costume

change i by &P

The controls, the two (and further) net types, the creation, joining and coloring of nodes
as well as the diagram creation are based on the sub-lists and can be developed largely
independently of each other. The topic is therefore well suited for teaching in different
working groups.

16.4 Evolution 176

16.4 Evolution

Contents:

e simple event control with buttons
e easy access to objects

e simple use of lists

The aim of this small project is to

produce a presentable result new experiment

with the simplest possible
methods, which can be used in
class if required. The methods,
e.g. for the representation of the
animals, are partly found by
“trial and error", which of course
challenges improvements. That's
the way it's supposed to be. The
starting points of the parts are father

somewhat highlighted in the

pictures h % ﬁ

childl child2 child3

| generation | |

mother

child4

| crossing child1 with child2 | | crossing child1 with child4 | | crossing child2 with childs |

| crossing child 1 with child3 | | crossing child2 with child3 | | crossing child3 with child4 |

In the project, "animals" are randomly created, each consisting of 9 rectangles of random
size, which are rotated to create a kind of horse. With a different composition, other "ani-
mals" can be quickly produced. The partial rectangles are always drawn in the same order
and orientation, so that you have to try out where to start drawing. Of course, this problem
can be solved more elegantly with some mathematics, and if parameters can be used to
influence how a rectangle is drawn, then it can be done more beautifully - in a different
way. But it can also be done quite simply.

After the production of two animals, four offspring are created and shown slightly smaller
below. From these you can choose two and appoint them as new parents. If you repeat
this, you can "breed out" certain characteristics, e.g. small heads or short legs. At each
crossing, the characteristics are changed at random. If a part becomes too small, it falls
away. So you can breed something like seals or ostriches out of the initial horses.

It makes sense to create new parts by mutations or to change the starting point of the
parts, i.e. to let them "migrate". To do this, the data structures must be changed, for ex-
ample by recording the coordinates of the approach points and adjusting the methods ac-

cordingly.

16 Projects

177

New animals can be created from the object Ani-
mal, which has a local method for this. In it, the
parts of the animal are generated as lists of
"reasonably usable" random numbers. They are
then combined to form the complete list.

The parts of the animals are always drawn with the
same method show part. The pen moves to the hor-
izontal position and rotates to the angle passed as
the third element in the list, then draws a rectangle
with the lengths passed as the first and second ele-
ment. In addition, the starting point is emphasized
somewhat.

The method show animal first changes the size of
the animal as indicated. Then the parts are drawn at
the "tried out" points. Only the first part of it is
shown.

-

Q9 show animal | animal : x # y # size 'n #
script variables ear (head (neck | .Imdy " display
display | to 9 change size of ‘animal to ' n

set ear |to' item @ of (display

set head |fo! item of display

set neck |to item of (display

set body |to' item of (display
gh tox: (X y: (¥

6 show part body

point in direction

turn t;. item ERp of (neck degrees
t...urn ,:3 &P degrees

move | item of (neck

t]Jrn ,t;, &P degrees

9 show part " neck

move | item > of (neck
point in direction @RS
turn & (item ER of (head
turn ,:3 &P degrees

|;10ve item of “head
9 show part head

turn S €D degrees
move | item of " head
point in direction I

turn 4 item of (ear

steps

move | item of (ear

9 show part ' ear
9‘ show animal ' display (2) at x
9\ show animal ' display (3)at x

(?® new animal
:':g::ripi variables
" head | ear
" hindLegDown | tail

pick random to

sef head | to list

meck | .hody | frontLegUp | frontLegDown | hindLegUp

pick random [P to

pick random to

pick random [P to
pick random P to EIP

pick random @ to EP
to list

pick random to

pick random &P to EHP
pick random [P to ELP

sél frontLegUp | to

- pick random [to
i
pick random P to
:'..'el froniLegDown | fo
. pick random [P to
i
pick random P to

set ear |to list

sel neck

set body | to list

pick random

pick random

set hindlegUp | to
pick random [to
pick random {J to

set hindLegDown | to
- pick random @[to
ist
pick random to
pick random [to
pick random to)

. pick random
list

pick random

set tail | o list

report
ear (head neck body

list frontl egUp
hindLegDown tail

-

9 show part | part :

pen up
set pen size to @&

set pen color to

point in direction @RS

degrees

l;love item of part
turn ,j_-:, &P degrees
move | item I of (part
thrn ,j_-:, &P degrees
move | item of (part
§E) degrees

move | item of (part

ﬁjrn 4—:,

move P steps
set pen size to (5]
set pen color to

move & steps

pick random [P to

pick random [to

pick random to

€ © @

(35 20 50

€ o @

25 2050

pick random to &P

frontlLegDown hindLegUp

16.4 Evolution

178

Two animals are "crossed" by randomly
assembling the parts of one or the other
animal into a new one. During each of these
processes the dimensions are changed
randomly - depending on the mutation rate
mr.

Select from which animal a part
will be taken.

Change the width of the part at
random.

Too small parts fall away.

also, for the height

Add part to new animal.

Return result.

A new experiment is started by asking the Animal
object to create two new animals as father and

mother. They'll be crossed.

This is done accordingly with the children.

mr #

? crossing of [animall : with (animal2 : mutation rate
%

script variables (part i result

5€l resull | to list

set parl to jtem /i of (animall

set parl | to item (i of (animal2

and { item @ of (part 3]

replace item EB) of (pari with

item (2 of (part [# RS NS Rl

replace item B of (part with []
re_pla(:e item of (part with [

< and { item of (part. =4[]

replace item @B of (part with

—
k random -2 to /7

réplace item @Y of (part with [
replace item of (part . with [

replace item EE» of (part with

LCUW 3 LR RO pick random £5 fo (5

add (part to (result
c.hange i | by &P

new experiment

set father to Ir.asll Animal |far 9 new animal of Animal

set mother | to[ask Animal {for (Q new animal. of Animal

c.rassing of ' father with ‘ mother

set generation | to [i]

when I am clicked |
c..rossing of childi with ' child2

go to x: v:
c'himge generation | by &P

16 Projects

179

Let us try to breed "jumping ponies" with short tails. First we create the parents and select

candidates for ponies from the offspring.

neues Expenment [59"‘”’“'0" neues Expenmem [GE"E“‘"O"
Vater Mutter Vater Mutter
Kindl Kind2 kind3 Kind4 Kindl Kind2 Kind3 Kind4
neues Expenmem. (55"5"“'0" heues Expenmem (Gensnmon
Vater Mutter Vater Mutter
Kindl Kind2 Kind3 Kind4 Kind1 Kind2 Kind3 Kind4

Well - evolution is just unfathomable!

16.5 Using the Sensor Board Calliope

180

16.5 Using the Sensor Board Calliope

Contents:

e access to external hardware

e physical computing

e access to current topics (“smart watch”)

@ Sensordaten an Snap

We use one of the standard sensor
boards, in this case the Calliope
mini. For this, there is a program by

Calliope gefunden!

Beschleunigung X: -176
Beschleunigung Z: 963

Andreas Flemming®®, which contin-

Button B: 0
Temperatur: 29

uously sends the measured values
of the board via an internal server
and thus also makes them accessi-

ble to browser applications via the http protocol. If we start the program, the Calli-
ope board is found after a short search and the measured values are displayed.

In Snap erfrage localhost:2235

Beschleunigung ¥: -132
Button A: 0
Helligkeit: 180

The measured values are in the sequence acceleration in x-, -y and z-direction, state of
buttons A and B as well as brightness and temperature, each in free units. We can easily
split this string. Afterwards the individual values are accessible as contents of a list.

:':et pen size to EP

set measured values | to

[sphit | GET | urk: send: || headers: by BEd
set y tol item @ of (measured values [/ [P

pen up

g;u tox:(x y:(y

|ien down

| change x | by §B
set measured values | to
| split GET |wrl: [[FEEEIFEPFEE send:] headers:

/ €D

by B

Fset y |to .itemmo[-meaﬂlredvalmas

go to x: (X y:i

In a small script, based on an
Eickhoff-
Schachtebeck 4, we try to

idea by Annika

convert the acceleration sen-
sor in the x-direction into a
step counter, as it is used in
smart watches. We therefore
attach the sensor board to
the arm or leg and display the
measured values graphically.
(However, we should have a
long enough cable between
board and computer!)

46 https://www.uni-goettingen.de/de/software+zur+verwendung+des+calli-
ope+mini+mit+scratch+1.4%2c+byob+und+snap%21+%28andreas+flemming%29+down-

load/569672.html

47 in https://www.uni-goettingen.de/de/unterrichtsbeispiel+fitnessarmband+%28dr.+an-

nika+eickhoff-schachtebeck%29+download/565581.html

The Calliope board

as a pedometer.

16 Projects 181

The result is graphically available here, but can of course also be stored and evaluated as
a series of measured values.

As an example, we enter the x-acceleration add
list

and the corresponding time of the measure- item GRS of (measured values | current fime-inmiliseconds .

ment to a list. to (% acceleration

These data must be smoothed for an evaluation, e.g. using an averaging of adjacent values,
and then the maxima of the measurement series can be determined for a step count. Both
are nice detail tasks. If we assume an average step size of 1m, then we can also determine
the speed - and display the results. These can

then be easily compared with those of fet resul_| to data analysis (CCEEUR TN xacceleration)

commercially available devices. They're often O ordo Y L0 B steps-with-a-speed-or

no better. A tem € of (resutt) VAGID

|

You did 6 steps
with a speed of 2.5
km/h.

>

16.6 Rate Websites: PageRank 182

16.6 Rate Websites: PageRank*®

Contents:

e search engines

e OOP techniques

e current political issues

If you know the addresses of websites, you can reach them directly via the net. But what
happens when we search for pages with specific content? For this purpose, of course we
use the search engines, which propose us to certain keywords network addresses from
their tables of contents. These directories can be created by web crawlers automatically
visiting as many accessible websites as possible, jumping from link to link, and adding the
keywords found there to the table of contents of the search engine. This usually results in
extremely extensive address collections for the same keyword.

Since users of search engines cannot handle large unordered address collections, the pages
found for a keyword must be sorted according to their importance. Users then usually use
relatively few addresses that appear first. The links below are hardly noticed. So at least
the commercially operating providers on the net must be interested in appearing as high
up as possible in the lists created by search engines in order to be found by potential cus-
tomers at all. They use all tricks to achieve this.

So far, nothing has been said about the meaning of a page's information for the keyword.
Just showing up doesn't mean much. For example, if a page contains the text "Nothing is
written here about Géttingen", it will still be included in the table of contents relating to
the keyword "Goéttingen". So, we need other evaluation criteria. In the simplest case, the
authors of a web page enter keywords in the meta tags for the content of the page:

<meta name = "keywords" content = "Snap!, school, computer science">

However, this possibility is often abused by using frequently used keywords - which do not
affect the page content at all - to direct potential "victims" to the site. Not very helpful is
the idea to count how often the keyword appears on the page. In this case, web pages
sometimes contain certain keywords "invisible", e.g. by writing the keyword very often in
white on a white background. Of course, you can also have people rate websites and enter
them in the search directories. But this is a very expensive and relatively slow way to create
directories, and of course such an evaluation is subjective. It is also often difficult to eval-
uate pages with special content - e.g. from archaeology. In the worst case, the "value" of a
page does not result from its content, but from the amount paid for the evaluation.

Another way to use the expertise of web authors for the evaluation of web pages on the
one hand and to automate the evaluation process on the other hand is realized in the so-
called PageRank procedure. Unlike the meta tags that evaluate your own website, links
from one website to other websites are seen as a knowledge-based vote by which authors
indicate that other websites contain interesting content. If someone refers to a page with
physical content, the author will most likely understand something about the content.

48 from: E. Modrow: Technische Informatik mit Delphi, emu-online, 2004

16 Projects 183

Moreover, since it is usually not known which other websites refer to their own, web au-
thors can only manipulate this procedure with difficulty.

The PageRank method does not evaluate all links equally. It determines a rank (the Page-
Rank) for each known website, which describes the "weight" of this page. This rank is di-
vided during the "vote" by links to all references leading away from the page. If a web page
contains only one outbound link, then this receives the entire weight of the page, if it con-
tains two, the weight is halved, and so on. (If the page does not contain an outgoing link,
it will not take part in the vote. In the PageRank calculation, it returns the value 0.) The
rank of a website increases if as many high ranked pages as possible refer to it and if these
pages contain as few links as possible.

As a first example, let's choose two pages that mutually refer to each other.

To calculate the PageRank of page A - PR(A) - we need the PageRank page

A 4

PR(B) of page B, because a link from B leads to page A. The calculation of
PR(B), however, again includes PR(A). So, we need an old value of PR(A)
to determine the new one. Since this argumentation can be continued, a method must be

developed to reduce the influence of the old values on the calculation of the new rank, so
that a stable result is obtained in the course of the calculations. This is achieved by multi-
plying the contribution of the incoming links by a factor d which is less than 1. Since this is
included in every calculation, the "very old" PageRanks are multiplied by d", a number that
is increasingly approaching zero. For example, you select the value 0.85 for d. If we desig-
nate the times at which the PageRank was calculated in the past as ti, t2, t3, ..., whereby
a larger index should mean an earlier time, then for both our web pages we get:

PR, () =...+085- PR, (B) =...+085(...+085: PR, (A))=...+085-...+ 085 - PR (A)=..

If page B had more than one outbound link, we would have to divide its rank in the calcu-
lation by the number of links - C(B). We must proceed accordingly with the other sites that
have links to page A. If we call these n web pages T1, Ty, ..., Thand replace the three dots
in the above relationship with (1-d), then we get the original formula that was initially
given by Google for the page rank calculation:

PR(A) = (1—d) +d .(PCR(%) ; PCR((FTZ)) ot PCR(fn))), d=085

The rank of a website is at least 0.15. But what influence do the other terms have? We
want to clarify the question with a simulation program in which symbolic web pages can
be created and linked. The PageRanks can be calculated in a "website" created in this way.

page

16.6 Rate Websites: PageRank 184

[setlinks | |_new page | [calculate page rank |

OO true @) page no (00) calculate PR

In our program, in addition to the buttons shown, which serve to control the functionality,
we need the prototype of a "Page", which (here) should be a website, as well as a global
list of all generated pages. Each page contains a link list with the numbers of the linked
pages, a number, a PageRank PR and a help variable PRnew, in which the newly calcu-
lated PageRank is added up.

Pages can be displayed on the screen.
Since text and numerical values as well as
some lines are to be drawn here, we use Sl o Gl e R
the already developed graphics library. switch to costume Uniiied

sef costume |to' copy of (current costume

set size of (costume to (30 N30]

fill rect between & &P and €P &P color &P on (costume
draw rect between & & and color B € €P on (costume
width &P

draw line from (1] to &P color) €D &P on (cosiume width
(2)

draw text (join number on (costume at &P hight
color €D €D €

draw text on (costume at @& &P hight color £ £ D
draw text (join [PR on (costume at &) hight color @B €D
(0 J

switch to costume (costume

16.6 Rate Websites: PageRank 185

The most important task of the prototype
is to create clones of itself. We save sucha | fei & L e DT
clone in a script variable result and ask it ;c,ipt e

to perform the operations that produce

result | to (@ new clone of mysefl |

the desired result through a sequence of

commands. The generated page is added =) 7 (S el N T Inumber €

to the page list. result to|| set to] with inputs]

set | to] | withinputs [IIE list

9 show of Page
tell result [fo| gotox: @@ v: @
with inpuis ' pick random to pick random [to
tell result |fo| show

i;dd result to page list

In the corresponding mode, pages are con- "
nected by clicking on two pages in succes- ittt
sion. The numbers of the affected pages ¢ i=icic =10

are stored in two global variables. Then — TR number
the first one can be asked to "link" to the -~ I
second one. The Pen draws a line be- || kst 2] number

tween the sides that decreases in thick- | tell Fei= to JL 0o Dm0l D= 00 = I
ness, a kind of arrow. (Mutually connected | with inputs §& 8T 8 on i B G el

sides thus maintain a connection almost Hem Gzl of (sl

the same thickness.) The second page is in- item (first page of (page list L0

serted into the link list of the first page. 9 add link @ to link list of (item (first page of (page list

with inputs 50T R

set first page |to [j]

sel second page |to [

When recalculating the PageRanks, each page must
distribute its current value to all connected pages. The page 9 AISEDULE S
calculates this value and asks all pages of the link list to SRl el e e Tk

increase their auxiliary value PRnew accordingly. if . | length of (link list |> [

set value to| PR /' length of (link list

for each 'item of | link list

-

tell item (item of page list o c.himge

with inputs [FIET] x (value

16.6 Rate Websites: PageRank

186

You can use these auxiliary methods to

|

calculate the pageranks. First of all, all
auxiliary variables of the involved
pages are set to zero. Then all pages
distribute their values to the connected =i e
other pages. When this is done, the
auxiliary variables are copied into the
PR variables and the pages are redrawn

with the new values.
repeat ungil i

by &9

repeat until < (1

with inputs PR

repeat untgil < 1

We now want to use our simulation program. We create
two websites, link them and calculate the PageRanks.
You can see that the values converge towards 1
(independent of the initial PageRank, by the way). This is
of course no surprise, because this is exactly what we
intended to achieve with the introduction of the

"damping factor" of 0.85.

As next example we choose the structure of a typical
homepage with a tree structure, which starts from an
index page and branches to subdirectories.

script variables (i

> | length of (page list

LN item (T of (page list 08 | set

> | length of (page list

> | length of (page list

LN item (i of (page list 0N | set

PRnew

calculate all PRs

A g
delete all PRs y

| [|» with inputs [FRnew [0.15 4»

-

calculate new PRs -

o QORI - ()

-

transfer PRs y

to j

of [item (i of (page list i

> | length of (page list v

_ show pages
(i |N item (i of (page list [|'9 show of Page » v
Ilnks new page | calculate page rank l

| rnkmu | (pagenc (EID) calculate PR

set links new page | calculate page rank
(imking @Y)) (p2oeno (NN calculate PR

16 Projects 187

We now assume that there are additional external sites [setlinks | new page [calculate page rank |
that link to our homepage. (tinking ._,' (pageno (0) (_ patcutate PR ’_J
The PageRank of the homepage increases considerably, E—
also the weight of the internal pages increases. page sank:
0.93346460) page: S
page: 3 page ranki
0.41430988|
page :lnk:/
0.93346460)
’ page: &
page: 4 page rank:|
0.41430988|
page ranki|
0.93346460]
page: 1
page rank:|
""“””\
page: 7 page: & page: 9§ page: 10 ‘paqe: 11 ‘paqe: 12
page rank:| |page rank: page rank:| [Page rank:| [page rank: page rank:
0.18 0.15 0.15 0.15 0.15 0.15
Finally, we want to assume that the external pages are [setlinks | new page [calculate page rank |

. X i i (tinking nug) (pageno (12]) [calculate PR m)
again referenced in a link list of the homepage. - -) - -

The rank of the homepage continues to rise. One can see B0 &
page rank:
how the importance of the pages is growing in a network 114131508 pager s
H . age rank:
of pages that mutually refer to one another in order to page: 3 f—
. k|
express their "respect" for one another. e =
ﬁ page: €
H . i 4 age rank:|
The PageRank procedure is a technical process that can :,:. — - arsarsn
also be transferred to other, e.g. social systems. How- Fes & =
ever, it quickly leads to socio-political questions, be- -

cause the focus is not on the content of the pages, but

on their structure and functionality.

page: 7 page: @ page: 9 page: 10 page: 11 ‘pag:: 12
page rank: page rank: page rank: page rank: page rank: page rank:|
0.21671072 |o.21672072] |o.21671072] |0.21671072 [0.21671072] Jo.21€71072

1. If the result of the PageRank calculation is decisive for the "visibility" of the pages*’,
why are commercially oriented private companies allowed to decide on this visibility?

2. The intelligence of the system results from the expertise of those who have consciously
set links in very different areas. Isn't the result actually a public good that should be
available to everyone without some profit (and power) from it?

3. If only the PageRank would be decisive, the search results would always have to be
arranged in the same order. Obviously, this is not the case: the results differ depending
on the person who is looking for. They are filtered according to their interests assumed
by the search engine. In extreme cases, you only get the results that you want to see -
or that someone thinks you want to see - or that someone thinks you should see. The
political consequences (keyword: "echo chambers") are currently under discussion.

49 What only appears at the back is practically non-existent on the net.

17.1 Warehouse Management with SQLite 188

17 At the Supermarket®®

In the following, rather extensive
project we will work in different
groups in the same context: a
supermarket. On the one hand,
technical questions are clarified and
“specialist” methods are applied,
and on the other hand, these
questions are intended to give rise,
for example, to the social effects of
the technology used. The aim is to
show that a system that is only one-
sidedly geared towards the
"automation" of its tasks can get
pretty out of control. The conflicts
of interest that arise between the
supermarket on the one hand,

whose employees want to do their
work efficiently and well, and the customers who want to see their privacy protected,
obviously require legal regulations in order to achieve a balance of interests. When
working on the subproblems it should be experienced that there are very different ways
to solve the problems. Of course, the various solutions also have different consequences -
and vice versa: if certain consequences are undesirable, then one can always try to find
other solutions that avoid these consequences. Technical decisions are almost never
"without alternatives". Presenting them in this way shows quite clearly that a discussion
of their effects should be avoided.

We imagine a supermarket with different departments:

e ascanner cash register (reads barcodes on the products, supplies article numbers
and invoices)

e awarehouse management system with integrated database (receives article num-
bers, supplies prices and, if necessary, orders products from suppliers)

e an "intelligent" scale for fruits (recognizes a fruit with the help of a camera, gen-
erates barcodes)

e anadvertising department (responsible for payback, advertising, special offers, ...)

e a security department (responsible for the payment of parking fees, customers
with house ban, ...)

The implementations of the individual departments run on different computers and are
processed by different groups. They communicate via a database on a server. And we do
not use professional procedures, but only "naive" solutions that challenge improvements.

%0 from E. Modrow, The SQLsnap supermarket, Scratch2015 Amsterdam

17 At the Supermarket 189

17.1 Warehouse Management with SQLite

© Datenbanken zn Snap und GP X

The warehouse management must be accessible. In this case we use a
small http server with "built-in" SQLite database by Andreas Flemming®!, [Eirstmristhe
which we can start with one mouse click. Then a menu window opens in
which we select the desired database - here the database supermarket.

‘ Eine SQLite-Datenbank laden.

‘ Eine neue SQLite-Datenbank anlegen.

There we ﬂnd f|Ve tables. "Die Beispieldatenbank verwenden.

e products(pnr,identifier,maxstock,minstock,stock)

@ Datenbanken an Snap und GP X

e suppliers(snr,supplier,zipcode,city,streetno)
Datenbank geladen

o prices(pnr,sn r, prlce) In Snap erfrage localhost:2234/SQLKommando
o fruitS(fnr,frUit,Shape,SiZG,COlOf‘COde) aktuelle Datei: supermarket

letztes SQL-Kommando:

e facerecognition(name,noseToEyes,mouthToEyes, mouseToNose)

letztes Ergebnis:

We created this database e.g. with SQLiteAdmin>? and filled it with data.

[— - o x

For the SQL server, we first import the SQLite blocks library
and the Sprite SQLite server (and thus also the required 7 5y mmm om s o0 e om0 s 7

PG ERICEE SQUAblrage Ergebris Datensatze edtieren

variables and access methods) in this order into an empty e KA S XA e

project. (We may also need the library "Web services access = 5&"" | = R = ——
(https)" from the file menu, depending on the configuration of ém °p‘°d=" E :m: ﬂ

the server. For the sake of beauty, we take a picture of a ggjwm 3‘;m :;g: :,3_ ;
warehouse as a costume of a sprite warehouse, send it to the = == = = i
correct position and make an stamp. Of course, we let the o ““m :ﬂ
server establish the connection. We summarize the “‘s:‘:’“g m: f" r

115 pear green oval big o0

corresponding instructions in the block Init as a local method

© Dstenbank verbunden SOLite: 351 3 with

of the warehouse.

switch to costume depot

g0 to x: €D v: €&

tell to § establish connection to il | of SOLiteServer
0T el hitpflocalhost2234) Bk

Our warehouse is waiting for the requests of the other departments of

the supermarket. We leave the implementation of our own functionalities when | dlicked

such as the automatic replenishment of stocks or the adjustment of prices

to (st B Y

set value Stage-size

to the tasks. However, in order to be able to answer inquiries, the
warehouse establishes the connection to the database when the green

flag is clicked.

51 http://www.uni-goettingen.de/de/http-server+mit+sqlite+f%c3%bcr+snap%21+%28down-
load%29+andreas+flemming/582081.html

52 Using a free tool, such as SQLiteAdmin, you can easily create databases and tables and en-
ter data.

17.1 Warehouse Management with SQLite 190

Our SQLite server can only do a few things: connect and compile the results of SQL queries.

e establish connection to | server = hitp://localhost:2234/ v SQL-query | query

script variables | result | row

set infobox | Eo list

set connection | fo (=0

set resull |to list

T ST, Bihttp: flocalhost: 2234/SHOW-DATABASES jiEE m
set connected |to < true @ ¥ | url (join [connection | query

switch to costume DB-connected

add CIEEDMEECEEN] to (infobox
else

sef row | fto | wrl [join connection [EEEE
repeat unfil- ‘row = |Jj
sef conneclion | fo ¢ .false

sﬁ'rt(:h to costume DB-disconnecte:

add to (infobox

a;dd row to (result

sef row |to! url [join (connection [SEENE

else
add to (infobox

For example, we receive all products with

In addition, we give them the option of listing the tables available in the database and
displaying the attributes of a table.

¢ SHOW TABLES ¥ suow coLuMs FrRoM (table

report QSQL—Anfrage ST SHOW:-COLUMNS-FROM: fi =11 C]

report QSQL—Anfrage HOW-TAELES

For example, to display all products, we compile a corresponding SQL query:
¢ establish connection to

SQLite-Server infobox D

(il connecting successfull |3

set resuil | o/ ¥ SQIL-query (

If you want to change data in the database, use INSERT..INTO...- or
UPDATE...SET...- statements..

100200 e roundon.100 I
E¥ 101 apole green round.o, 010 [
BY 102 tomato,soundmiadie 100 |
P¥105 oramge round i, 10 J§

EY 104 apricotovamidae 110 |

3 105 banana ong.bi. 10 J§

i = - 106 cherry,round,smai 100 |8
9 uppaTE SET [= WHERE ¢ E1 107 cucumber,long,big,010 |3
1108,grape green,round,smai, 010 J8
12109, grape biue,round,smatl,001 3
gl 10,aubergine,oval,big,001 Ji

Attention: Character strings must be enclosed with apostrophes! Jog t.plom,ovat midete, 001 J§

£kl 112,asparagus Jong,big,111 |§

LY 113,blackberry,round,small,000

113 114,radish white,round,middie, 111 |8
13 115,pear green,oval,big,010 |8

o) length: 16 Y

9 insert invo @ ((ORI ST NS) vALUES (

175 [pear ovar [big J 070

17 At the Supermarket 191

Tasks:

1. If some products have been sold, the inventory has fallen below the minimum value
minstock. Order new products so that the maxstock level is reached again. Find the
supplier with the lowest price for this product.

2. The supermarket wants to become an "organic supermarket". Change suppliers for all
relevant products and adjust prices.

3. Add organic products and their prices to the product table in addition to the cheap
products - if possible.

4. Every Saturday evening an update process is started in the warehouse because the
prices of the suppliers may have changed. In this case the product prices have to be
adjusted.

5. The supermarket works well but needs more money. Increase all prices by 10%.

6. The warehouse management needs statistics on sales per month and year. Collect the
necessary data and display the sales in suitable diagrams.

7. Write a block for delete statements for SQLite.
Syntax: DELETE FROM <tablename> WHERE <condition>;
Example: DELETE FROM suppliers WHERE supplier = ‘Miller’;

17.2 The Scanning Cash Register 192

17.2 The Scanning Cash Register

. Snep! Build Your Own B X

<« C | @ Sicher | nttps//snap.berkeley.edu/snapsource/snap htmi

1 - % supermarket with SQLite

| - I

' araggatie

Scannerkasse productNumber (50)

Scannerkasse price [EX10))

Locies Sensing
Sound Operators

= Varisbles Soipls Costumes Sounds

switch to costume || Pl
next costume "'" licied

M (costume #

| hide variable price |

say for @@ secs
say

think (I for @) secs
think ST

[hide variable produciumber

[§ determine the price of the barcode

123475670

change ghost | effect by ¢ff
set ghost | effect to @

clear graphic effects

change size by @D

set size to G %

W (size
Show

hiide

go to front

g0 back P layers
update > with H

We have already dealt with a barcode reader before and therefore no longer have to deal
with all the details here. For the sake of beauty, we take a picture from a scanner checkout
as the costume of a sprite ScanningCashRegister, send it to the correct position and
make a stamp. We summarize the corresponding instructions in the Init block as a local
method of the cash register, which is called when the green flag is clicked. Additionally, we
import the sprites Barcode and Laser from the old project barcode scanner.

[T m——rm—— We receive barcodes
from the sprite Bar-
code. If this is visible,
the laser can determine
the EAN code. The re-

quired variables and

set produciNumber | to [IIICT
show variable produciNumber |

set prico_| to [GE

show variable price |
tell| Barcode | f0/| show |

methods were im-

tell Barcode |to| |§ next barcode, | of Barcode
ported as local varia-
bles. With their help the
scanner determines the
(which
here must be smaller
than 17) and asks the

server for the price.

of Laser

tell Laser |to |§ read EAN-Code

set produciNumber | o

| EAN-8-Code | of Laser | VAGTIIGIRS [NSTRN + &9

sef price |fo

item @K of
ask SoliteServer | for (9 exec SQL command [l
with inputs

| SELECT 5% FROM WHERE (m — | productNumber

product code

of SOLite-Server

switch to costume scanning-cashregister

g0 to x: €D v: €&

17 At the Supermarket 193

Tasks:

1. Draw some new costumes for a printer sprite that can print barcodes on the stage. First,
the user should be asked for the number to be displayed.

2. Search for information about your national barcode system. In Europe you will find EAN
codes. Change the printer sprite to a "national printer sprite" that prints these codes.

3. If the warehouse management does not know the price, an appropriate response
should be made. Change the script to a usable version.

4. If the warehouse management works correctly, the cash register should provide ans-
wers in the form <price>,<name>. Make sure that.

5. Have the cash register produce invoices for the customers, including the date and time
as well as all purchased products with prices and the total amount. Taxes should be
declared as usual in your country.

6. The laser works quite slowly. Increase its speed.
7. Instead of always asking for individual data, the cash register can also get the current
prices of the products in the morning and then work with this copied data. Change the

system accordingly.

8. The warehouse can add new products to its database by reading the EAN codes at the
checkout and entering the remaining data manually. Implement this option.

17.3 The Smart Scale 194

17.3 The Smart Scale

A Snap! Build Your Own Bl X \) Deepl Ubersetzer X
< C | @ sicher | https://snap.berkeley.edu/snapsource/snap.html Y| o

1 - %t supermarket with SQLite

{ control Cr
Sensing

| switch to costume smartscaie
[show
g0 to.x: @D 2

stamp -
(resuit

(Teovte o

(St resun | to =TI

T A <
‘m resut_| to(9 recognize fruit theFruit S sy
sel

[Seript variabies (a ' SOlite Sever |for 9 exec SQL command [

[inherit | LEC[FROM WHERE
= (Goin |} item @B of (result.
=t i..i..] item @ of (result. |
in front of J
item @ of B fcem
]lnqumi-e color code of item € of

all but first of B

length of &
/Bl contains

add w@

delete @S of B

insert [at @D of B
—— . gw o1

A sensation is looming in the supermarket: the fruit department has ordered an "intelli-
gent" scale with a camera that is supposed to recognize and weigh fruit at the same time.
Unfortunately, only the camera is included, the fruit recognition has to be implemented by
yourself. The fruit department gets help from the staff of the scanner cash register, be-
cause they have already done similar things.

First, we try to find some criteria to distinguish fruits. We draw an apple, an orange, an
apricot and a banana. The differences are obvious:

e apple and orange are round, the banana is long

e orange, apricot and banana are orange-yellow, the apple is (in this case) green

e the apricot is small, the others are bigger

But what do "round", "long", "yellow" and "green", "big" mean???

We know it, but the computer doesn't. We have to teach him.

We bring the object into the middle of the stage and send the laser from left to
right and from bottom to top over the image. We measure the size of the object
on these routes and calculate the ratio of the results. "Round" objects should
have a ratio close to "1", "long" objects others. For "oval" objects we should

actually use several measuring directions. But for us "oval" means "not round
and not long".

17 At the Supermarket 195

The determine horizontal dimensions - block of the laser
provides a list with two values: left and right border.
Correspondingly, the determine vertical dimensions - block [=
lower and upper limit of the object. With these results we can set distance | to

decide whether an object is round, long or oval. And we know its [B —
size. go to x: v:
point in direction EE

¥ determine horizontal dimensions

script variables | distance | result

The color of the object is still : = -
repeat until © not - color is touching JJjj ?

get width of >»

missing. We import the already
known library and use the RS IEIE =

blocks to determine the

move | distance steps

repeat until color is touching JJj ?

getRGB from >» at &P &P

dimensions of a costume and move P steps

to determine an RGB value.
add ' x position to (result

move &P steps

repeat until color is touching JJj ?

? determine the average color of | fruit

:':i::ript variables

dx dy x v color | costume | width height R 'G =
move [distance steps

costume | o | ask' fruit ‘for| copy of (Ll

repeat until © not - color is touching JJj ?
heighl | to get height of | costume
move P steps
width | to ' get width of [costume

i;dd X position to (result

dx | to| round (width Vgl

——————— rgporl result
dy | to| round ({ height [T

to(height / @ With their help we

repeat €9 measure the color
set color |to getRGB from (costume at(x (y values at 5 points on

3

change R item I of (color the vertical and

change G item @& of (color horizontal centerline

change B item @ED of (color respectively and

change x dx determine the mean
value from them.

sef x

repeat &

set color to ' getRGB from (costume at X (¥

3

change R | by item @) of (color

change G | by item @& of (color

(:..hange B | by item K of (color

change y | by (]

report

list [round { R VAGIR) (round { 6 VA |round(B VAEHD

17.3 The Smart Scale

196

Using these methods, the laser can determine the
characteristic properties of a fruit.

| '° recognize fruit theFruit

Normal fruits have different colors. But our RGB values can
display 256 * 256 * 256 colors, so 16,777,218. That's a little
too many. We need a method to reduce the number of
colors.

We try this: for each RGB channel we decide whether the
color value is "high or "low". If it is high, we set it to 255,
otherwise to 0, so we only get two possible values for each
channel, so 2 * 2 * 2 = 8 possible colors. With this
procedure we try out whether we can see anything useful
atall - or not.

(9 determine color code of | color : with limit (limit #

script variables | “result

if - | item @ of (color | <[limit

~

set result

else

to (join | [J

~
sef resuil | tojoin Jj @

if . ' item @K of (color <[limit

—
set resull | to join result []
else

.

set resull

to [join result [

if * | item &R of (color | </ limit

set result
else

to [join result [

set resull | to(join result [J

(9 measure (fruit

script variables dx dy result (left "'_righl up down (h

60 to front

set h

sel lefi

to (Q determine horizontal dimensions
to| item (K> of (h

righf | &0 item of (h

h |to(Q determine vertical dimensions
down |to/ item @ of (h
up |to' item of (h
dx | tol right — left
dy tol up - down
resull | to list

it (dy [/ dx) < [X]

add [to (result

« (IR

add to (result

else
add to (result

if/ (max of (dx and dy =31100

add EiEl to (result
else

U (max of (dx and dy | < A]

add [EEE to (result

else
add [to (result

add (9 determine the average color of fruit

to (result

(9 determine color code of item of (result with limit !

It's looking good, isn't it?

So, we can equip the fruit scale with a method that asks the laser to determine the fruit

data.

¢ recognize fruit (" fruit
script variables | result

set resuli | to
with inpuis fruit

|'...ask Lases | for (9 measure

of Laser

17 At the Supermarket 197

And this result is used for a database query on the SQLite server. The color space is re-
duced as discussed and the quotation marks are placed around the data.

set ergeonis_| to (IR
set ergebnis | to (§ erkenne die Frucht
- ' .
set egebis |0 It's working!
ask SOLite-Sever |for (9 SQL-Anfrage | of SOLite-Server
with inputs
| SELECT WHERE

After these successes the crew of the fruit scale becomes courageous and tries to analize
real fruit pictures.

A Snap! Build Your Own BI- X

<« C | @ sicher | httpsy/snap.berkeley.edu/snapsource/snap html fr
]

{ Control

Sensing
Operators
Varanie

st
J in front of &

item @ES of B

all but first of &

length of B
<Bl contains

add =] = D -

: s =

Orange2
delete G of Barode SmartScs DrawnFr RealFré LicenceP

insert (I t K9 of B n
[—— L

It reduces the number of colors as described...

" result

17.3 The Smart Scale

198

... and think that's enough. It'll take a while, but they've got time.

Finally, they calculate the average colour of the fruit as indicated
and reduce the result again. If they do that with an orange, they
get a pretty yellow.

(¥ determine color code of item L) of (result with limit EEZP !

This means that the database can also be searched for "real" fruits
- what more do we want?

|9 reduce color space of

— P ———
‘sel costume | to | ask RealFruil | fo

l_!:el widih | 0 get width of (cosiume
I_s\el heighi | o ' get height of (costume

l_;elx to [J

repeat uniil - 'x > m—@
|__r:ety ito [
|sel color |fo' getRGB from (costume at (X (y
|—!:el R |to item @ of (color
[_:':el G |to/ item @K of (color
l_!:el B |to item & of (color
iR o<jEg

lseiR to [
else
lseiR to 259

else

lset G |to &

if B <[

lset B |to[]

else

Lset 8 |to 25

= - e S
setRGB (R (G (B atix (y on/ costume
rchangey by &9

’1;] RealFrul |to|| switch to costume (Costume

17

At the Supermarket 199

Now you have the full toolbox together for optical fruit determination:

1. Take a picture of a fruit and choose it as the costume of a sprite. You can take pictures

with your smartphone or laptop camera. The background should be white.

e W

Reduce the color space of the image.

Measure size and shape of the fruit.

Measure the mean color of the fruit and reduce it as well.
Calculate the color code of the fruit.

The obtained data shape, size and color code can be used as columns of a database table.
We will have three different values each for size and shape as well as 8 possible color codes.

This allows us to distinguish 3 * 3 * 8 = 72 fruits. Try a "real" intelligent fruit scale in a
department store - we're not that bad.

Tasks:

1. a:

Create a database table for fruits of the following type:
pnr fruit shape | size color code
123 red apple round | big 100
223 cherry round | small 100
456 | banana long big 110

b: Add the table to your database.

Write an evaluation method so that it provides the name and price of the fruit. To
do this, use database commands.

The color reduction process is very coarse. Come up with a better way.

Our fruit recognition process only works well if the fruit is placed in the center of
the stage and aligned horizontally. If we fit a sprite with a fruit picture as a cos-
tume, we can center and align the Sprite in the middle before we print the cos-
tume. Implement the procedure.

If we use a more detailed color code, we can distinguish more fruits. Would that
be progress in any situation?

It could be that the background of the fruit is not white. Can you help?
You can drastically reduce the duration of color space reduction by using Jens

Monig's pixel library instead of getRGB... Do that. You can use the "light of old
stars" as a template.

17.4 License Plate Recognition 200

17.4 License Plate Recognition

GO—EM-123

The success with the smart scale goes through the department store like a wildfire. It also
reaches the security department. Among other things, it is responsible for the parking gar-
age. To simplify the payment of parking fees, the department installs automatic license
plate recognition. Registered customers with a customer card and automatic billing no
longer have to stop in front of the parking garage barrier - at least that's the hope.

Car license plates contain special character sets that facilitate character recognition by
computers. In Europe they have a black border - and that is good for us. So, let's try to
determine the numbers on the plate. (We leave the other signs to you.) Fortunately, we
have already realized almost all tools for our project. All you have to do is ask the people
at the smart fruit scale!

We are trying to develop an extremely simple method of license plate recognition. The
result is very sensitive to changes in position and size of the license plates. But these
disadvantages can be easily corrected by using a detailed measurement method. Take a
look at the exercises!

OCR (Optical Character Recognition) uses complex methods, often with neural networks,
to recognize characters. Here we are inventing a simpler procedure that is similar to that
of the smart scale. Because all our marks on the license plate are the same width, we can
easily identify them once we have found the boundaries of the license plate. With the in-
telligent scale you can see how this happens. We continue to use their laser.

We can produce license plates quickly with the help of various generators on the Internet.
We save them as costumes of a sprite LicencePlate.

We start by searching the top and bottom of the license plate for lines that do not contain
black pixels. Their positions indicate the upper and lower edge of the relevant characters.
Then we search from left to right for vertical lines with black pixels. When we find the first
one, we also have the beginning of the first character. Then we search for the first vertical
line without black pixels. Their x-position is the end of the first character. We have a "win-
dow" with the first sign in it. The next line with black pixels gives the width of the gap
between the characters.

123456780

17 At the Supermarket

201

9 determine upper edge of plate from (x0# on [costume

script variables ' color 'x [y blackPixelFound | width | height

set width | to get width of (costume

set heighl to ' get height of (costume

set blackPixelFound | to < @ false

to [}

repeat until blackPixelFound

set y

set x to (¢

repeat until &0 5T TS T or{. x | (width — @

set color |to geitRGB from (costume atix (y

(item @ of (col < 50

<-' item @5 of (color < LU jtem @D of (color (<]

lsel blackPixelFound |0 < true @

—
change x

by &

change y

by &9
F;pnrl y — &

K next vertical line from | x0#
and (down # on

with black pixels between
costume

script variables ' color 'x [y blackPixelFound

set x| to (£

sat blackPixelFound | to < @@ false
repeat until blackPixelFound

set y |to (2

set color | to getRGB from (costume at!x

lsel blackPixelFound | o ¢ true @)

c.'hange y | by &9

change x

1]
rr:pon x - &

up #

(9 next vertical line from | x0 #

v determine lower edge of plate from (x0# on
script variables color (x [y

costume 3=

blackPixelFound | width | height

set width | to get width of (costume
set heighl | to ' get height of (costume

set blackPixelFound | fo < @ false

height — &

repeat until blackPixelFound

set y |to

set x | to €L
blackPixelFound or (X =) (width — P

set color | to getRGB from (costume at(x (y

lsel blackPixelFound | to < true @)

by &9

=
change x

change y

by G

without black pixels between

up # und (down # auf (costume

script variables (color (x 'y blackPixelFound

set x | to £
set blackPixelFound | o ¢

true @)

repeat unfil - not blackPixelFound

set blackPixelFound | to < () faise
1

set y |to (02

set color | to' getRGB from (costume at (X

<] ELLLE ' item of (color < Y

true @

Now we can move this window over all characters of the license plate and try to recognize

the characters inside the field.

0123456789

00123456789

17.4 License Plate Recognition 202

We can move a red rectangle across all characters by

L AT —— sign from (x0 # on [costume >

first determining the character width and the gap - - -

script variables (xStart | (xEnd | (code

between the characters.

set xStarl | fo

¥ next vertical line from ((x0 — &J) with black pixels between (upperEdge
and lowerEdge on costume

sef xEnd | to
'Y next vertical line from [xStart + @& without black pixels between
{upperEdge und lowerEdge auf (costume

set upperEdge | to (@ determine upper edge of plate from & on | costume
set lowerEdge | to(9 determine lower edge of plate from @2 on | costume

set xStarl | fo
| next vertical line from &) with black pixels between 'uppertdge and

(lowerEdge on costume

draw rect between (35tart) (upperEdge and (xEnd (lowerEdge color
@I on (costume width

set xEnd | to
(¥ next vertical line from [xStart + @) without black pixels between
upperEdge und ' lowerEdge auf costume

set chaWidh |to((xEnd — (xStart

next vertical line from with black pixels between
(upperEdge and

set number | o

[join (mumber (@ look for the next sign from (xPos on | costume

[_(Iange xPos | by (charWidth + (gapWidth

The number recognition itself is still
missing. As a starting point we take
the characters with the rectangle

around.

We imagine a "sensor field" consisting of three crossing lines. We measure the colors at
the round points. We number the points as shown and look at the results in tabular form. P2 P3 pa
(gray fields: result difficult to predict)

P5 P7
P6

Code(s)
00100100 P8
01111110
01101010
01011100
01111100
11010001
00001100
0100100
01111010
00010100
01010100
00101100
00101110

Errors may occur with characters 3, 8 and 9 if the points are not very well adjusted. But
that doesn't matter, because if we move the sensors P2, P3 and P7 a little bit so that they
provide clear values, we can even do without the sensors P1, P2 and P8 (e.g.) and still
have a usable code.

17 At the Supermarket 203

Code Wert
10010 18
11111 31
10101 21
11110 30
01000 8
00110 22
00010 10
11101 29
01010 10
10111 23

A possible layout for the remaining sensors would be:

01235456789

We choose a license plate with all ten characters. The sensors are placed in suitable p-laces
(here: (14]24), ...) and stored in a list to read the colors in the character window at the
positions and to form a code number from the colors interpreted as a dual code. When
we're done, we transform the code into the right character.

[recognize the sign

> | length of (points
‘ set x |to|(x0 +/ item g of

’_:':el y |to|(upperEdge +| item @K of |

sef color | o getRGB from (costume at (x (¥

ircle (X (¥ radius @ on (costume color P o

set dualcode |to ((dualcode / @&
I:himge i by &
report 9 code code —> cipher

17.4 License Plate Recognition 204

Now the security department can ask the laser from their office in the car park which car
has just arrived:

| ParkmgGarage (Nl 123456789 \

B0123456789

The result is particularly impressive for the advertising department, which immediately
sees completely new applications for the process. Everyone's very proud of the security!

Tasks

1. Inthe examples, the sensor positions are given absolutely in pixels. Address the sen-
sors relative to the size of the character rectangle.

2. Character recognition in the examples is very simple, but very sensitive to changes in
the size and position of the license plate. Use more sensors to detect the characters
more reliably.

3. Extend character recognition to the entire character set for vehicle license plates.

4. Character recognition programs can learn. If the script does not find any recognizable
patterns, it should display its result and ask for the correct character. Save the pat-
terns and the corresponding characters in a database table. Use queries to identify
unknown patterns.

5. If you want to read dirty license plates, you won't find any sharp character bounda-
ries. As a result, some sensors will produce errors. Improve the results in such cases
by determining the "next correct code" of an incorrect code.

17

At the Supermarket 205

10.

11.

12.

The recognition of dirty plates can be improved by converting the color "7 i ™ ©.o0%

image to a pure black-and-white image and closing the gaps caused by c’l ') 3
the dirt. Find out about suitable procedures for this purpose and -Lﬁ-

implement one of them.

The security department needs a database of license plates and vehicle owners and
their status (customer, company member, unwanted person, external parker, etc.).
Can you help?

The license plate recognition turns out to be a great success for the security depart-
ment. All its members are very proud of it and the other members of the company
admire the "sheriffs". The advertising department now wants to use the data from
the license plate table to honor customers as VIP customers who are frequently and
for a long time present in the supermarket. These have special parking spaces near
the elevator. Write a query to find VIP customers.

After some time, the VIP parking lots are occupied by pensioners and unemployed.
Therefore, the advertising department extends the criteria for VIP customers by a
minimum of turnover with their purchases. Because almost all customers use credit
cards for payment, this is no problem. Improve VIP customer query accordingly.

The advertising department finds that it would be helpful to know not only a custom-
er's turnover but also what they have bought. If it knows the interests of customers,
it can provide them with special offers and special prices. Determine the additional
tables required for this and their columns in the database. Write suitable queries.

The advertising department wants to know whether its advertising activities are suc-
cessful. Do they reach customers? Try to answer these questions based on the stored
data.

On German motorways, the truck tolls are determined using toll collect barkers that
read the license plates of the passing vehicles. They read ALL plates and then delete
those of the cars. Is this approach appropriate? Discuss the consequences if all vehicle
numbers and their positions would be stored.

17.5 The Advertising Department 206

17.5 The Advertising Department

=

=

Paul Peter Mary Hannah

The advertising department is excited about the possibilities of character recognition and
wants to expand this area: they want to know who is in the supermarket. The aim is to
identify customers with a face recognition program. We have already familiarized
ourselves with the procedures for this, which is why we now only deal with possible
consequences - in the form of tasks. These can be of more technical nature, but can also
quickly lead into the field of computer science and society. The transition to this is a bit
abrupt, of course, but in the media you can quickly find examples against which ours are
still harmless.

Tasks

"Technical" tasks can be derived quickly and with different demands from the previous
project:

1. The four images used so far are very simple. Experiment with real images. Prepare
them so that the scripts can be applied to them.

2. Look for additional parameters to distinguish faces.

But of course, we can also become "bitchy", and use the data obtained in a different way.

3. Toidentify the people on the pictures, a photo of the customers should be taken au-
tomatically every time they use their credit or customer card at the checkout. Discuss
this idea.

4. The security department should keep "unwanted persons", i.e. shoplifters, tramps, ...
away from the supermarket. If the facial recognition identifies persons whose data
must of course be stored in a database, it triggers an alarm. Sometimes the process
produces a lot of trouble, therefore the security department wants to keep the group
of people a little more subtly away: the garage barrier does not open for them, the
elevator is on strike, doors remain closed, ... Discuss this situation.

17

At the Supermarket 207

5.

The advertising department has nice ideas too. There are many people in the super-
market who buy little or nothing. Others only buy special offers or cheap products.
These are also declared "unwanted persons" because they take up space that should
be better reserved for VIP customers. Discuss this situation.

And it can be really dangerous.

6.

7.

8.

9.

Unwanted people have to be noticed before they can be harassed. That's why the
security and advertising departments put together profiles to identify them before
they enter the supermarket for the first time. Develop such profiles and discuss the
consequences.

The advertising department knows from the cash register what customers are buying.
However, many customers are clearly interested in products without buying them.
Therefore, the customers' path through the supermarket should be followed. This can
be done with "number plates" on the shopping trolley, RFID chips on these, with the
help of face recognition or their smartphone will be located. If they remain standing
somewhere for a particularly long time, this can signal an unfulfilled desire to buy.
Now the advertising department knows which products a customer is interested in.
Personalized advertising for the corresponding products can be sent to customers on
their smartphones, or the data of these customers can be sold to stores that specialize
in these products. Discuss this situation.

The supermarket wants to focus on VIP customers. These in turn are identified via
corresponding profiles (car brand, residential area, personal criteria derived from face
recognition, shopping behavior, etc.). To avoid trouble, non-VIP customers should
continue to be allowed into the supermarket, but they are subject to minor chicanes
(see above). Discuss this situation.

Face recognition is always possible when a camera is available, i.e. in smartphones,
"smart glasses", laptops, surveillance cameras, cars, ... Because the Internet is also
available almost everywhere, the images can be compared with those in accessible
social networks, databases, ...; accessible to the photographer or accessible to others
who come to the images and are interested. Therefore, anyone who comes into the
field of vision of a camera can be identified in the foreseeable future. Discuss this
situation from different perspectives.

About the Notation of Snap!/-Programs 208

About the Notation of Snap!-Programs

There are repeated objections that Snap! programs on paper would be difficult to write
down and exams would therefore be difficult to design, because it would probably not be
possible to demand that the students work with crayons. Alternatively, sophisticated syn-
tax suggestions in this area can be found on the Internet. Even if | don't see the sense of
using syntax again for a largely syntax-free language in this way, and | think the algorithms
should be written down in appropriate forms (Nassi-Shneiderman-diagrams, UML,...), here
follows proposals on this subject.

It must therefore be shown that graphically formulated algorithms in Snap! can be rec-
orded on paper. For this purpose, method heads and algorithmic basic structures must be
representable. As with other systems, nesting also results from indentations and graphic
aids.

Element Snap!-block handwritten textual

method head

method mame

| method name ‘1 (12 |

method name p1 p2

function head

result:

function name p1: result

event handling

when | receive: any message

(example)

FOR loop repeat(a07) reapeat 10-times
il ...

head controlled repeat unt

loop

variable variableabc

. iabl B
declaration varia e@

one-way - if ...
alternative F9_J '
s

About the Notation of Snap!-Programs 209

two-way
alternative

else....

evaluation of a

run

call ...

script

evaluation of a

function call

I

method call of run ,move n steps” of sprite(2)

tell| Sprite(?) | 0| move @@ steps | |with inputs FJ

run"move n steps” of sprite(2)
with parameter "20"

another object with parameter “20”

Example: Sorting a list in Snap!, formally with indentations and "by hand".

sort thelist

variableinh

setitol

repeat until i > length of theList — 1
setntoi+l

repeat until n > length of thelList

if . item(n of (theList item (i

| =Sps ~ Gl if nth element of thelist > ith element of theList

| set h |to item (m)

- = set h to nth element of thelList
replace item 'm of |

I : = replace nth elem. of thelist with ith elem. of theList
replace item 1 of |

replace ith element of thelList with h

changenby1

changeiby1

variableinh

setitol

repeat until i > length of theLb

set ntoi+l

repeat until n > length of thelList

if nth element of thelList > ith element of thelList

et h to nth element of thelist™

replace nth elem. of theList with ith elem. of@

replace ith element of theList with h

changenby1

changeiby1

How To ...

How To ...

Topic

... change the size of the screen areas?
.. resize the stage?

... change costumes?

|Il

.. “nail” sprites on stage?

... use loops?

... use alternatives?

... start an animation?

... stop the execution of a script?

.. use character codes?

... display texts using sprites?

... convert characters to uppercase?

.. use local variables?

... declare script variables?

... display a variable in a monitor?

... display script variables in a monitor?

... change variable values with a slider?

.. use parallel processes?

.. use lists?

.. use higher list functions (MAP...OVER...)?
.. plot a diagram?

... output text on stage?

... write your own methods?

... differentiate between global and local methods?
... assign a type to a parameter?

... create a drop-down list for a parameter?
... find just invisible blocks?

... send messages?

... access other sprites?

... call methods of another object?

... access attributes of other sprites?

... send a message to specific objects?

Chapter
2.6

2.6,82,11.1,14.4,154

2.74,7.42,9.3,15.3,16.3

3.3,16.3,16.4

272, ..

274, ..
2.74,31,3.2,4, ..
3.1
3.3,12.2,15.2,16.1
3.1,5,6.3
12.2,15.2,16.1
2.7.2,31,..91,..
271,273, ..
3.1,33, ..

5.

11.

3.2,74
2.7.2,2.74,6, ..
8.3,8.6,10.3,11.2,16.2
2.75,4.6,13.4,16.3
275,33

271, ..

271, ..
2.71,3.2,..,121, ..
125

271
2.7.2,31,..,163, ..
2.7.2,7.,7.1,..
2.73,2.74,32,..,7, ..
4.2,45,46,7.,7.1,..

3.1

How To ... 211

.. respond to messages? 3.1, ..

... clone objects? 2.73,3.2,7.,7.2,73,7.4, ..
... cCopy objects? 3.1,7.1, ..

... find neighboring objects? 274

.. request user input? 3.3, ..

... export a project? 4.1

... export global blocks? 41,121

... export a sprite? 4.1

... create your own library? 8.2.2,12.1

... copy a script to another sprite? 4.1

.. measure time? 4.2

.. respond to keystrokes? 43,9.1

.. run scripts step by step? 5.

.. use recursions? 6.2,8.1,13.2

... display a table permanently? 6.2,6.4,12.4,12.5,15.4
... create new control structures? 6.4,15.3,16.3

.. use code as data? 6.4,7.,9.1,12,,15.3,16.3
.. merge sprites into an aggregation? 7.4.2

... speed up the program flow? 8.1,9.2,9.3,12.1,14.2,15.4
... access RGB values of pixels? 8.2,8.3,84,8.6,9.2,9.3,17.3
.. use pentrails? 8.2,8.4

... write JavaScript-functions? 8.2,8.5,9.3,13.2

.. react on colors? 9.1,9.2

.. produce sounds? 10.1,15.2

... play sounds? 10.2,15.2

... change sounds? 10.3,10.4

... draw transparently? 8.5,11.2,11.3

.. use an external server? 12.4,12.5,16.5,17.1

.. import a text file? 12.4,16.2

... create and use predicates? 13.2,15.1

.. use a stack? 14.3

.. hide blocks? 15.3

... draw the costume of a sprite in the program? 16.6

Index 212

Index

<attribute> of - block........ 17,18, 32,47,48,55

Abelson, Harold..........coevvvvveeeeeeieiiiiiiieiiieeeeen, 11

acceleration SeNSOrevvveerveerieenieeneeenne 180

access control............ - ... 51

address............. e ———————— 23,139, 182 clone....... 10, 15, 17, 26, 47ff, 58, 167, 172, 185

adjacency list.......... clone, dynamically generated.........cccceeueenee 52

adjacency matrix............ clone, statically generated.......cccccevvvieeennnes 47

advertising department................. 6, 188, 204ff cloning..... 9, 26, 36, 47ff, 52ff, 59, 60, 173, 211

ageregationccevevvveeeeeiiiiiinnens 53,57,59, 211 cloning, dynamic........ccceevveeeiveeennnnnn, 47,52,57

algorithmooeeceeee e, 12, 208 cloning, statiC.....cccevveevierneenieeree e 48,57

algorithm, geneticcccceeeevieveeviecieieneeens 123 code.... 12, 25ff, 47ff, 77ff, 110, 145, 202ff, 211

algorithmics.....coocviieeiiiiicieecceeees 4,16, 117 code, unevaluated........ccceeeeveiiciieeeciieees 18

alternativeoovevceeeneeeneenieeees 162, 208, 209 color chanel.....oocveceevceeeceeeeecee s

alternatives, nested...........ccc....... 140, 142, 158 [ole] [o] gl ole Yo [T U UURRTRIRIS

analysis of COdecvvurrviiriieieceeee e, 35 color cUbe...ooviiiieeeieee

ANCNOT (i 59 COlON MIXET aevieiieee et

AND Lot 57, 60, 62 cOlor SEPArationc.cceceeveeveenieneenenienennens

ANIMAtioN ..o 34,210 COlOr SPACE .eveeieeeieeee et

approach, experimentalccccceeveenierinennne 30 coloration

ASK ceveeeeee e 18, 47, 50, 125, 141 command block...

attribute............. 10, 11, 47, 50, 117ff, 190, 210 computer algebra

PAY0 e [To 0] 4o e OSSR computer science .. 1ff, 27, 117, 145ff, 182, 206

automata theory computer voice................ .. 143

automaton......6, 139, 140ff, 1 concept, informatical........ccoceeveiriiiniiniens 12

automaton, cellular-... e ————— 149 conclusion, logicalcccecvevieeneeniiennieeiees 34

automaton, finite139, 140 conflict of interests......ccccceeeviieeiniieeiniinenns 188

=) o] 1 VOSSR 135, 136 CONNECEIVILY wvveeeiiieeeiiee e 6, 169
consequence, politicalcccoveeeeiieeciienennn, 187

Barabasi, Albert-LaszlGccccevveeeveeennnen. 171 consequence, SOCial....ccovveeeeieeecciieeeninnenn. 8, 88

barcode generatorcccceeevviiiiiieeccineeee, 94 context menu....... 15, 24ff, 78ff, 102, 113, 119ff

barcode scanner.........ccceeevienene 5,77,94,192 control oUtPUL ..c..oveveiiiiiicicce 35

basic equation of mechanics..................... 31,33 control structure.. 12ff, 44, 109ff, 156, 172, 211

basic structure, Algorithmic 77, 82,208 [1o] 0] 1 ¢] I 16, 18,47,78

DEALING veeeveeeeee e 34 COOPEraAtioN ...evveveeeeiiee e 4,10, 30

Beauty and Joy of Computing........cc.cceeeuenee. 11 coordinate system.......ccceeeueee. 21,71, 163, 167

behavior, socialcccceeviniiiiininiiniiiin, 150 COPY MAChINE .o 145

binary tree......ccccoveveviiiiniiciics 46 COPY trvtenrieneererieentteitesresiee st et besseesbe e sresanens 48

bioinformaticsccoovvveviiiiiniiieiieeeeiee e 111 costume. 18ff, 27, 59ff, 70, 74, 78, 82, 141, 211

black and white image.........ccccoceeveveernenns 74,75 CreatiVity oo reeeeeeeeeee e

block cipher......c.coveiirieniieeeecce 123 cryptanalysis..............

block... 9, 11ff, 63ff, 80ff, 108ff, 147ff, 210, 211 c-shaped command...

block, eMpPty.....ccceriiriiiiie curve, recursive ...

block-editor... . CUStOMEr Card..ccuvveveeerieeneeeieerieeieene

[oTo] o] 44 KT U] o PSRN

button .. 15ff, 27, 78, 80, 85, 106, 172, 176, 184 data source, external........cccoeeeeveeeeeeienennns 117
data StOre .oooeveeeeeeeee e 48, 49

CABIE et 58, 180 data structure......cceceeevcieeeiieeennns 11, 12,176

Caesar-encoding......ccoeceeveercveeneenenennnnn 27,109 data structure, higher.......ccoccoeveeniennienneens 44

calculability....cccceeeeveneeniinieenccecee 145 data type, atomiC.....cccevveniiiiiniiiiiniicice 37

calculator.....ueeecceeiceeeeee e 134 database.......cccceeuevennen. 12, 117ff, 188ff, 198ff

Call i 50 datenbase qUery......cccoceveerereenenceceeee 197

(071 1T o TSR 6, 180 decidability ...ccoveeeieerieieee 145

camel problemcccoecveevieiiereeee e 29 decodingcooveenuiieiierieeieeseeee e 28, 80

CaPACIEOr..cvvrieiiicrcriicne, 5,101, 102, 103 default Positioncccccceevenereeneneene 145, 146

CoCUIVE etirteeeee et eeeeeiree e e e eeenanreeeeeeeans 76 delegation.......ccceeeevveeeenen. 4,10,12, 48, 53,57

Chain rule..eeeiciee e 134 DELETE FROM ..ccuiiiiiiiiiiiiiieiieeceeeceee 191

change, temporalcccceevveeeeeeneeceeseeee 34 derivative

character code......ooovveeiiecnieeeeecieiiieees 109, 210

character recognition 200,204,206 diagram

character 9, 15, 25ff, 106ff, 135ff, 200ff dialog...coeeceeereeeecreceere e

CheCKbOX ..occeviieciieecee e 117

Index 213
digital simulator hardware.......
digitization offensive Harvey, Brian
Dijkstra method........cccccvveeviiieiiiiiieciieeene hat blocK.....cooviiiiiiic
AdiMENSION...cuiiiiiiiieciee e hearing testccevveeeviii e,
DNA SeqQUENCINGvvvveeireeeeiieeecveeeeivee e Helmholtz coil......ccoeveiieeiiiiiieecieeee, 101
download directory......ccccceeevcieeiicieeenninenn. help Page ...uvvevieeeieeeeee e 36
draggable......cccvecieeiieeece e Herget, Wilfridccoeveeerieeceeceeeeeees 141
Aragon CUMVEcouveeeciieeeeiiee et Hertz, Heinrich.....ccoovevviiiieiiiiieeecciieeeee e, 34
draw statement........cccoceeviieieciineenn, hide primitives.......cccceeeveeeiiieeicieeciee s 146
drip PaiNtingcoocveeiviiieeeeee e, hide variable......cccoccviriiiine, 35
drop-down listccovvveeiniiieennnen. higher order list operationccccevvvevennnes 165
AUPLICAt. i Hilbert CUrve.....coovvvevcieeeccieecceeceieees
house bancoovvvieniiiieee e
EAN-8-COdE ...vvvvecirieeciieeeiieeeee, http BIOCK .evveeieiieee e
echo chamber.......cccooviveiiiiinii hUub
edge detection hydrogen bond
electron source hyphenationccccceevviveennen.
elementary magnet...
IBAN NUMDbBET ...ooviiiiiiiiiieeceeee e
idea, own.............
... image recognition
... IMMUNISATION.....coiiiiiieiieiie e
.. impact, social.....cccocveeeviiieeeiieeccee s
€rrOr MESSABE .evvvrveeeeeeeireeeeenns 156, 158, 161 import of table datacccccveevviieennnnn. 6,164
error ... 9,11, 35, 36, 84, 126, 158, 202, 204 IO v sseseesees 113, 164
eveNnt CoNtrol.....ocveveerieerienieeee e 176 infection chaincccovceeveniiineeee 169
event handling.........ccccveeeiieiiiiiiiiiecciee s 27 INFECTION oo 14,18
VOIULION ..oviiiiiiiieeiie e 6,176, 179 infinite 100P .oovcveeeiiie 11,25
EXITurieeeeieriireee e 58, 60, 61, 62 informatics and societyccceceviriieiennnenn. 77
export blocks.......coeeeeiiiiiiieecciiee, 30, 69, 108 informatics system 8,117, 162, 169
export............. 27,32, 33, 34, 82,108, 114, 211 inheritancecccceevevvvveeeceeenn,
EXPON it 31, 82,113 initial state...ccovveeeeiieiieeee e
expression, 10gicalc.ceevvveviienieeniicenienee. 125 initial valueccccevieenieniieeeee
input slot options
face recognition 5, 88, 94, 189, 206, 207 INSERT..INTO
feed-forward-methodcccoceeviiiniriiieennnnn. 61 insertionsort....
field, electric........... instance variable..
field, magnetic INSTANCE ceveiieeee e
final state.... internet..11ff, 39, 76, 80, 117, 149, 170ff, 200ff
L1 ol = T introduction exampleccccceveeerveecieeneennenn 37
fitness function.......coccveeveevieiieeniienieeeee 123
flag, green 13, 23, 32, 85, 102, 113, 189, 192 JavaScript3, 63, 66, 68, 71ff, 88ff, 124, 126, 211
FlU. s 4,14,18 JK-Master-Slave-FlipFlopcccceeveveeeninennnns 62
for all sprites................. 15, 16, 25, 30, 106, 125 [] 14 USRS 80, 106, 165
0133 (oo o FO SRR 4,44
for this sprite onlyccccevuvenne 15, 16, 78, 125 KBY weviiitieiee et 27,109, 110, 123
forgettingcccovevveieeiiiie e, 56, 126 keyboard........ccceeviiiiiiiie 97
Fre@ZING. .o ve e 35
frequency analysis.......ccccoeeueneen. 5,29, 113, 115 =] o 1= N 21,27
function termcccccveeenis 6,124, 125,129, 134 labyrinth ...coooiii 56
function...... 34, 38, 50, 60, 70ff, 91, 106ff, 131ff lambda calculuscccovvveeeiieiciiieeee e 12
function, trigonometric......cccccoevveevvciveennnnen. 134 language, block-oriented........c.ccccevvivieinnnns 4,9
language, context-freecccoevvveveevcieennnnns 135
language, object-oriented .. e 4,9
launch.....coeeviveeeeeeennn, 25, 49, 57,59, 60, 97, 98
lazy evaluation.... .. 125
learning process .. [T 10

gnomsort....

goat problem

BrAMMAT . eeiteeeieeeeeeee et
graph.....ccccoeees 6, 14, 18, 21, 40, 131, 134, 145
gravitational force.......cccovvvvveercenieeniecene 26
grayscale image.....ccccveveeveeeceesieeee e 74
grid automatonccccvveeiiieenciec e 152

gross national productcecceevecieeeniinenn. 150

learning Step. e 54
LED et 5,57,61
length of c...ooeeviiiiiee s 28,106, 110
<] 4 (=] TR UPT 106, 109
Levenshtein distance........cccccoceveeeecieeecnnenn. 123
library 5, 21, 27, 44, 66ff, 82ff, 106ff, 189ff
license plate.......... 6, 74, 94, 155, 200, 201, 204
Lieberman, Henryccccoveveeeviveeeiieeennns 10, 48

Index 214
life expectancy PageRank...... ..6, 182, 183, 184, 186, 187
Lindenmayer, Aristid PAliNdromMeccvveieeeeeeeeece e 123
line graphicscoceeevviveeeiiiieciee e parameter............. 9, 12ff, 37ff, 70ff, 106, 114ff
link.. 77, 169, 170, 171, 172, 173, 182, 183, 187 0T 1 (=10 | SR 10
LISP ettt 11,12 Pareto distributioncccceevveveeeeeecinveneneeenn. 171
list........ 15ff, 37ff, 66ff, 75ff, 135ff, 165ff, 175ff parking fe€......oovvvevveeieecee e 188, 200
logical value.......c.cooveeiiiiiiiiecec e, 37 Parking garageooccevevieeevniieeeenieeennns 200, 204
108IN SCriPt..vvieiiiie e 113 PArSEr weveeeeeveiiireeeeeennns 125, 128, 129, 138, 158
LOGO for the poor........ccceeeevveeennnenn. 6, 156, 162 PArsing.....coceeevveeennns 6, 125, 128, 131, 134, 156
JOOKS e 13,35 partial problem.......ccccoocieiiniiiniiiinens 9, 10,93
loop 18, 25, 37, 78, 110, 116, 123, 156, 208 PAIS coeeeeieece ettt
L-SYStEM .eevviiiiiiiieiieieeeereeeeeeeeeeeeeeaeeeee 6, 135, 138 PasSPOrt Photocceeeeciveeeiiiie e,
PasSWOrd requUestccvveeeiieeeiieeeciiee e
MAZNET evieeiiieeciree e e e 4,52 password, COMPIEX......ccuveeririeeiririeeeiieeenins
Mail adresscoeeeeeeeeeeieeeeene, 6,139, 140 path search......cccooeciiiniiiii e,
make a block15, 25, 85, 106 Pavlovian learning ..
make a variablecccccoeviiiiiiiiiiiiee, 16,78 payback
makro......... veeennnnnn 27,37, 145 Peano curve..
map-function. e ——— 74, 76, 109 pen....cccuveenene
MAtriX eeeeeeeeeeeinees 4,44, 45, 46 pentrails...........
Mealy-machine........ccccevveeviieeciiee e, 141 phase transition........cccccveeeecieeecieeeeciee s
media educationcccoeevuveeeiiieiiiiieeeee e 4,7 pheromone trailcccccoveeiiieiiiiieecieeee,
MEeNU bar......ccoociieiee e, 13 PHP e
message.. 16ff, 23, 24, 32, 52, 81, 166, 208, 210 physical computing.........ccceeveevriiiinniieennns
mMetatag...cooevriiieiiiiie 182,183 PhYSICS oo
methode........... 3ff, 46ff, 106, 125ff, 172ff, 210 pivot elementccceeeeiiieiiiiiicieeeee e
methode, globalccccueeennnne. 25, 30, 44, 87 pixel graphics.....cccccvveeviiieiciieeccieeeens 5, 66, 68
methode, locale .17, 25, 49ff, 85, 177, 189, 192 pixel......... 66ff, 85ff, 90, 91, 102, 152, 200, 211
methode, parallel.........cocvevieriieniiiienene 25 PIXEIS.eieriieeiieeereeee
methoden callcccovveeiiiiiiieiceeece, 18,52 planet image......cccocvveeeieeeciiee e
MiNi [aNgUAageccecuvveeiiiieeiee e, 162 planet transit.......cccceeeeiieeiiiee e
Monig, Jens 3,6,11, 95, 163, 165, 199 plants, artificialccccccooveiiiieiiiiiece
MONITOT .eeiiiiiiiiiieeeee e 27,35, 210 plausibility checkcocveveerienniiiieeeen,
Moore neighborhood...........ccccceevuieniernenne 155 play sound until done
MOotioN......cccveeeernenn. 010] AU
motivation.. Poisson distribution.........
mouseclick............ 11, 15, 23, 59, 170, 172, 189 population data......cccceeeveeiriiiieiiiiennnns 165, 166
MUItIPlEr....coeviiiee e, 14, 18, 22 predicate .53ff, 124ff, 134, 139ff, 155, 162, 211
music... 5,7,8,95,97 prisoner's dilemma..........
MUEAtION....cueieiiee e 123,176 probability of infection
my block.....coevviiiiiiiiiiiien, 16, 18, 47, 59, 60 Product CoOdecovcviiiriiiiiniee s
Product rUl€......eeeeviiieeiieeeiee et
NAND gate.....cccovveevveeeriieeeiiieeenns 57, 60, 61, 62 program functionallyccceeueee. 6,124,125
Nassi-Shneiderman diagramccccceecueene 208 programming language 9,11, 156, 161, 162
navigation systemc.cccceriiiiniiiiiniieeee 143 programming, object-oriented......... 3,4, 10, 47
neighbors 18, 41, 150, 151, 153, 155 programming, text-based..........cccceevviiennnn 156
NETWOIK ..vvveeeieeciiieeee et 94, 169, 207 project, work sharing..........ccccevvvveeeniieeennnes 188
network, Nneural.........ccceevveveeeeeeieinennnn. 169, 200 ProtoCOl.....ueveciiiecciee e 169
NEtWorl, SOCIAl ..uuveeereiiiiieeeeeccceeeeee s 8 prototype.......cccceenes 9ff, 25, 47ff, 167, 173, 184
NEUION ..uiiieeeeeeriiireeeeeeseiireeeeesessenereeeeeees 54,55
NOE et 40ff, 169, 170ff question, ethical.......ccccoecvviiviieiiniiiieiieees 150
NOT At cvvveeiiiieeiiee e 62 question, social.....ccccveeviieiiniieeeninennn 163, 169
number 25, 37ff, 77ff, 126ff, 155, 156, 165, 200 QUEUE et et e eteeeeeaeee e 44, 46, 48, 51
number, smallest.......ccocovveeeiiiiiciiieeeeeeeeenes 38 quicksort....

operation, reCUrSivecccvvveeeeeercivneeeeeennns 125
OPErator cuvvveeeeeeriieeee e 28, 80, 106, 109
opinion-forming, political..........ccccccvveenennee. 172
OR Bate. e s 60, 62
output window.......... 13, 35,37,47,59, 78,113

random network..
random number ..

... 6,170,171
..37,45,177

random value e 24
rank of a web pageccccevvvveeeiieeennns 183,184
reference ...occvveeeeeeeecceeeee e 15,17, 48
reference manualcccceeeeeeecnveeeeeeeennns 15, 47
FEPOIT ittt 107
reporter........couee. 15, 49, 50, 84, 106, 118, 120
FESONANCE .veievrreeeeeeriireeeeeesesirrreeeesssssasreneees 34
RGB MOdEl...ueeeeeeeeciireeeeeeeecirieeee e 5, 66

Index 215
RGB..... 5, 66ff, 74, 76, 85, 86, 91, 195, 196, 211 state change
r0ad SIBN.coiuiiiiiiiiie ettt 82 state diagram.......ccoeceeeeeviiiiniee e
(0] ¢ o AR UUURRRRPRNE 4,53, 54 state graph ccoccoevveeeeviieecee e
RS-FHPFIOP .eviiiciieeeieee ettt 62 stop button, redccceeeeiiiiiiiiiciies 35,52
rule systemccooeeeviieeniiee e 135,136 STOP ittt ettt 24
FUN cettteee et eeeerae e e e eeeanaans 49, 50, 60, 163 string fuNCtioncceeveeeceeceeeee e, 106

StriNg OPeratorcceveeceeveeeeeeeiiiieeee e 106
SAMPIE rate .uvveeciieieiee e 96 StriNG ProCeSSING...ccviiviriiiieeeeeeriiiieeeeeeeiiens 124
SAMPIES .evviieeiieeeciie e 96, 97, 100 string... 5, 27ff, 37, 77, 106ff, 126ff, 164ff, 180ff
SAY teteeeeeeriinrreree e et re e e e e e rre e e e e s nanrreeeeaenans 35 SUBSEITULION .eeveeeee 116, 135, 136
scale, smartccooovvvvii 188, 194 SUM TUIE .. 129
scalefree network.........cceevvveeeeeeenns 6,171,174 supermarket.....6, 77, 117, 188ff, 205, 206, 207
scanner checkoutccccuuu.... 6,188, 192, 194 Sussman, Gerald und Julie.......ccccevveeeeeeennnne. 11
(Y or- 1] 0[] PP RSPPRN 162 SWIMMINEG ceeeiiiiiiiiieeeeecrrree e
SCHEME ..ciiiiiee ettt 11 SWItCH e

SCRATCH. 3,11,13,143
script level 15, 31, 80, 82
script variable... 17, 24, 35, 39, 80, 86, 129, 210

SEArch eNGINecueevvviiveriiieeeiee e 182
security department..... 188, 200, 204, 205, 206
SELECT it 120,121
sensing 16,17, 18, 32, 47,78, 95, 125, 141
sensor field......cocveeeeiieeiiecee e, 202
SENSON ciiiiiiiieieeeeeeeeeeeeeeeeeeeeeeees 53, 202, 203, 204
SENSOrboardcccceevvcivieeniiee e 6, 180
seroconversion time..........ccccceevveeieeennn, 14, 18
server 12, 113ff, 180, 188ff, 192, 197, 211
L] ST 16, 44, 48, 50, 78, 79
[TG Yo SRR 46
show variablecocovieeiiiicieeeee s 35
side effeCt....cciiccieeieieecee e 125
SIierpinski CUNVecccveeeciiieeiiiee e 76
simulation........ccccveevene 4,14, 30, 34, 146, 151
script 9ff, 31ff, 52, 78ff, 131, 147, 152, 206, 211
L [T 1] USSP 71,102, 103

small world phenomenonccccceeeunnee.
smartwatch ...
SnapMinder...
snowflake...
social credits

SOCKEL coviieeeieee e

SOlar SYSteMcovvviiiviiieiiiee e,

sorting by selectionccccceevcieiiiieniiiiin e, 37
sorting method.......cccoeveevieeieenecee e 46
SOMEING coveeeeeeiieeeiee e, 4,37, 38, 39, 209
soUNd NAMET....coviiiieeiieiereeee e 96
SOUN rECONAEN ...uveevieeieeieerreesiee e e 95
sound.... 5, 8, 13, 95, 96, 97, 100, 141, 143, 211
special offer......ocvvecceenciecieceeeeeee 188, 207
[o1 1= {4 e PRSPPI 155
SPIIt e 106, 143
spread of diSeases......cccvvveeercrieeiicieeesineennn 172
spreadsheet.......occveveevieeceenecee e 164
spring pendulum4,30
sprite 10ff, 47ff, 78, 80ff, 103, 113ff, 141ff
SQL database.....ccovveeeeeiieciirieeeee e 5,117

StAGE SIZE .ueviieeiiieeeeee e 137
stage... 13, 14, 15, 16, 66, 71, 81, 102, 103, 104
STAMP ceieriieeeee e 94
StArt tiMe ..o 24

switching time .
syntax diagram

syntax

System time ..o

1A (e 164
table VIEW ..cccvveeieeceec e, 45
teaching, creativecccccecevveeeeieeecciieecee, 7,8
TEAM WOTK wvveeeeeeeciiiieee ettt e 9
el 15, 18, 49, 81
testing machineccccceeecveeecieecnnnn. 145, 147
textfile oooveeeeieeeiieee, 5,,51, 113, 164, 211
TeXt INPUL ..o 27,28
text oUtPULcoviiiiiii 27
TEXT et 106, 120, 162, 210
theatre DiStro......cccceevveeeciiiicccieeeceeeeeee s 29
thread......cocovviiiiieeeeece e 25
threshold value.......ccccovviiiniieiinnnes 54,74,76
time announcement, automatic.................. 143
L]0 0= PSS [32
tools.... 7, 21, 27, 44, 95, 106, 109ff, 163ff, 189
top-down approach.......... 11, 30, 111, 124, 125
topic, political

topology
TOrus Worldooeevveeiiee e
TOUCh SENSON ..uiiiiiiiiiciiie et
TOUCNING . .viiiiiiee e
towers of HanOi.....cooecvvvveiiiieniieiniieeeieees 36
transfer procedureccocceevveeveeneeniieennnns 29
transparency................. 66, 72, 85, 86, 102, 103
tree structureooeeeeeiiiiiii 186
troubleshooting......ccccevvciieeeiieeennnenn, 4,35, 36
TrUCK TOIl eveiee e 205
tUrbO MOdE..ccciiiieeieee e 63,74
Turing machine......cccccceeevieenne 6, 139, 145, 146
turtle graphics ..o.ceevveeieeneenieeniceeee 63, 135
TUrtlE e 135, 137, 156, 162
TYPE CASE e 27
typing......... 15, 25, 106, 147, 210
UItrasonic SeNSONueeevvveeiciieeeeiiee e

UML diagram...

unicode............

UPDATE...SET ...

UPVAT cetiiiiiiieeiieeeseveeesieeeesieeessaseeessseassssseees
Url BIOCK ..
vaccination protection...........cccceeeiiiiieeennnn. 172
variable. 4, 15ff, 32ff, 70ff, 102ff, 164, 209, 210
variable, globalcccceevvvveeennnen. 24, 27, 35, 37

variable, local........cceeeeenne. 25, 32, 35,102, 210

Index

216

variables. .15, 16, 24, 28, 37, 38, 78, 80, 82

LVZ=Te1 1o] SRS 26,104
verification code.......cccvvveeeveiiveeeeeiiiinnnnnns 77,94
Vigenére encryption.......cccoceveeevciveeennns 109, 141
VIP-CUStOMET ...ccvvveervereeereereeeeeeereeereeeanns 205, 207
Visual StePPINg.....cccveveviiieeriieeiiee e 35, 36
visualization................ 8, 23, 30, 37, 95, 96, 163
Von-Neumann neighborhood 149, 150
Wait Until c..oeeeeeiee e 35
WL e 35,125, 141
warehouse management .6, 188, 189, 191, 193
WaATP coviiiriiieeeeeessiereeeeeeenenes 63, 65, 66, 85, 107
WAV fil€..uiiiiiiiiiiieeecee e

way, shortest......ccccvvvieieicieinieccieeee,

web services access (https) .
WEDCraWIercoiiiiiiiieeecee e

website ... 6,169, 182, 183, 184, 186
weight 54,183, 187

with inputs17,49
Wolfram, Stephencccccoveeviieiiiiieeccnee, 155
WOTIKING COPY wvvieririieiciiieeeiiee e e eetee e siree s 89
XML FIlE e 82,114
XOR encryptioncoceceeeiieeiniiiiiiiieniineeee 29

XOR gate...ccovviiiiiiiiiciiciicieci, 29, 60, 62

Index 217

